
Shader Programming:
An Introduction
Using the Effect Framework

Jörn Loviscach
jlovisca@informatik.hs-bremen.de

Hochschule Bremen
University of Applied Sciences
Bremen, Germany



Agenda

● A First Glance at Shader Programming
● Review of Basic 3D Techniques with .fx
● Phong Illumination Model and Interpolation

● Break

● Basic Shader Effects
● Bump Mapping
● Complex Shader Effects
● Outlook



A First Glance
at Shader 
Programming



Examples for Shaders

Typical:
● Phong Interpolation
● Deformation
● Bump-mapping

Not so typical:
● Glow (frame-based)
● Glow (pseudo-geometry)
● Shadow Volume Extrusion



Why Can Graphics Cards
Work so Fast?

multiple 
identical
units
working
in parallel

pipelining

data flow



Why Can Graphics Cards
Work so Fast?

parallel processing -->
restrictions in programming model

specialized units -->
(only?) special functionality available



Shading Languages

● Assembler languages

● High-level languages
● (RenderMan Shading Language)
● Nvidia Cg  Microsoft HLSL
● OpenGL Shading Language



The Effect Framework



The Effect Framework
Nvidia FX Composer,
Microsoft EffectEdit, etc.



The Effect Framework

Alias Maya,
discreet 3ds max, etc.



The Effect Framework

Microsoft DirectX,
Nvidia CgFX



Review
of Basic 3D 
Techniques
with .fx



Four-Component Vectors

(Open jl_simplematerial.fxproj.)

Point: ( px, py, pz, 1 )
Vector (direction+length):

( vx, vy, vz, 0 )
Color: ( r, g, b, a )

● Color range: 0.0 to 1.0
● Precision: float and half
● float3 etc.
● Swizzling and masking



Transformations and
Homogeneous Coordinates 1

● Perspective Transforms cannot be written
with matrices as usual.

● Trick: 4x4 matrix, perspective divide
     Matrix

● (x,y,z,w) ---> (x',y',z',w') ---> (x',y',z')/w'
● Compare: foreshortening
● Rotation, scaling, linear perspective, and 
translation represented by 4x4 matrices

● Homogenous: common factor cancels
● Translation affects points, but not vectors



Transformations and
Homogeneous Coordinates 2

● DirectX uses row vectors,
not column vectors by default:
Multiply vector * matrix

● Composition of transformations:
(((v*M1)*M2)*M3 = v * (M1*M2*M3),
Reduction to one single product involving v

● Standard matrices in DirectX:
World: Position and orient an object
View: Position and orient the camera
Projection: Choose the camera's lense



Back Face Culling, z-Buffer

Back Face Culling helps with visibility only for 
closed convex objects, but improves speed for 
all closed objects.

z-Buffer:
standard
real-time
solution
for visibility
computation



Real-Time Rendering Pipeline

"Fixed-function"

● Transform
and Lighting

● Perspective Divide
● Triangle Setup
and Rasterization

● Shading
and Texturing

● Depth Test
● Alpha Blending



Real-Time Rendering Pipeline

"Fixed-function"

● Transform
and Lighting

● Perspective Divide
● Triangle Setup
and Rasterization

● Shading
and Texturing

● Depth Test
● Alpha Blending

"Programmable"

● Vertex Shader
(Vertex Program)

● Perspective Divide
● Triangle Setup
and Rasterization

● Pixel Shader
(Fragment Program)

● Depth Test
● Alpha Blending



Restrictions to Shaders

Vertex Shaders:
● Access to only one vertex
● Must set position
● Vertex may not be duplicated or deleted (but may 
e.g. be moved outside the view)

● No access to textures (different in SM 3.0)

Pixel Shaders:
● Access to only one pixel
● Must set color
● Access to screen-space differences
● Screen position fixed
● Pixel may be discarded (clipped)
● Access to textures



Phong
Illumination Model
and Interpolation



Illumination: Normals 1

(Open jl_phong.fxproj.)

● Lighting depends (mostly) on the angle 
between the local tangent plane to the 
object and the light source.

● Tangent plane hard to compute based on 
points.

● Solution: Equip each vertex with a normal 
vector (mostly, of unit length).

● "Semantics" POSITION and NORMAL
in HLSL



Illumination: Normals 2

● Normals given in object space,
but lighting computed in world space:
Conversion?

● Only translation or rotation:
Use World matrix

● Uniform scaling contained, too:
Use World matrix and normalize afterwards

● General case:
(Ma) x (Mb) = det(M) (M-1)T(a x b)
Thus use WorldInverseTranspose
as transformation matrix for normals;
normalize afterwards.



Parameters and Annotations

float4 DiffuseColor : Diffuse
<
string UIName = "Diffuse Color";

> = {0.6, 0.9, 0.6, 1.0};
float4 LightPosition : Position
<
string Object = "PointLight";
string Space = "World";

> = {-1.0, 2.0, 1.0, 1.0};
● Connecting Parameters to UI Elements

Annotation

Semantic

Default Value



Phong Illumination
in the Vertex Shader 1

Phong illumination =
constant

+ diffuse
+ specular



Phong Illumination
in the Vertex Shader 2

Phong illumination =
constant

+ diffuse
+ specular

Viewer
position:
VI[3].xyz

lit function



Phong Interpolation

Data transfer from vertex to pixel shader:
struct VertexOutput
{
float4 HP : POSITION; // homog.
float3 N : TEXCOORD0; // normal
float3 V : TEXCOORD1; // to viewer
float3 L : TEXCOORD2; // to light

};
● Position may not be read in pixel shader.
● All values interpolated between vertices.
● TEXCOORDn to transfer unclamped values.



Phong Illumination
in the Pixel Shader

● Vectors needed in the computation:
normal, view vector, light vector.

● These may be computed per vertex 
(precise enough if no bump mapping; 
computation per pixel incurs higher 
costs).

● Automatic interpolation computes
per-pixel vectors.

● Interpolation denormalizes vectors;
may need normalization in pixel shader.



Basic Shader Effects



Deformation

(Open jl_deformation.fxproj.)

Subject the position x to a mapping x -> f
(x) in the vertex shader.

But: Normals have to change, too. Use 
inverse transposed Jacobian matrix.



Texture Mapping

(Open jl_texture.fxproj.)
● Textures: Putting wallpaper
onto 3D surfaces

texture DiffuseTexture : Diffuse
//...
sampler DiffuseMap = sampler_state
//...
float4 t = tex2D(DiffuseMap, IN.UV);

● Deforming uv space
● Creating textures in .dds format



Bump Mapping



Bump Mapping:
Tangent Space

● Bump Mapping: Do not actually deform 
geometry, only use distorted normals.

● Store normal vectors in a texture;
● most efficient and easily controllable
in locally adapted coordinate frame.

● Host application has to deliver unit 
vectors of that frame per vertex: 
normal, tangent, binormal

● Typically converted to World space in 
the vertex shader.



Bump Mapping: Normal Maps 
and Environment Maps

● Distorted normal (nx,ny,nz) stored in 
texture (normal map) as pseudo-RGB.

● Difficult to paint. Start with bump map 
instead and convert to normal map 
through gradient.

Environment map:
● Simulation (quite imprecise!)
of perfect reflection

● Cube map = wallpaper put onto the 
inside of an infinitely large cube



Complex
Shader Effects



Textures as Functions

● reduce computational load
● generate complex (life-like?) looks
● clipping/wrapping built-in

(Open jl_textures_as_functions.fxproj.)
Generalization of Phong lighting:
tex2D(LightingModel, float2(LdotN, HdotN));

(Open jl_textures_as_functions_2.fxproj.)
Versatile anisotropic reflection:
tex2D(HighlightModel,
0.5 * float2(HdotT, HdotB) + float2(0.5, 0.5));



Alpha Blending
(Open jl_alpha_material.fxproj.)

current pixel (source)
RGB A

old pixel in the buffer (destination)
RGB

new pixel in the buffer (destination)
RGB

● Blending operations may also be 
configured differently.

● Drawing order affects transparency.



Multiple Rendering Passes

● Usage 1: Add different contributions, 
e.g., from several light sources.
Problems: repetition of upfront 
computations; precision loss

● Usage 2: Deform geometry differently 
for each pass, e.g., for object and halo.



Outlook



Outlook 1

Using .fx in one's own software:
Toolkits: DirectX 9.0 or CgFX
Compute matrices etc. yourself
and hand them to the toolkit
Compute tangent vectors etc.
and add them to the geometry

int numPasses = myEffect.Begin();
for(int i = 0; i < numPasses; i++){

myEffect.BeginPass(i);
myMesh.DrawSubset(0);
myEffect.EndPass();

}
myEffect.End();



Outlook 2

● Advanced programming features:
branching, not unrollable loops 

● Conflict with parallel processing,
one has to pay in terms of performance.

● Nonetheless: Trend to overcome more 
restrictions in each new GPU generation.



Outlook 3

Future work?

● Try to put any algorithm onto the most 
current GPU? 

● Conceive new ways to improve workflow 
in game and VR design


