Home | Lectures | Videos | Publications | Talks | About | Impressum, Datenschutzerklärung

Stand: 2016-04-05

Themen und Termine

Bitte die Videos unter „Grundlagen“ vor dem jeweiligen Termin ansehen, auch wenn der Termin auf einen Feiertag fällt.

Unten sind die Videos auf YouTube verlinkt. Alternativ stehen die Videos auf www.j3L7h2.de zum Ansehen und zum Download bereit.

Die Videos mit „A“, „B“, „C“, „D“ sind Aufgaben und Erklärungen aus vergangenen Jahren.

vor dem 5. April 16


Überblick, Vektorräume
Skript

Grundlagen:
01.1 Überblick 2. Semester; Lineare Algebra, Differentialgleichungen usw. 40:28
01.2.1_2 Pfeile, Vektoren, gerichtete Größen 17:18
01.2.3 Ebene R2 und Raum R3 13:38
01.2.4 Vektorraum 16:01
01.2.5 Basis, Dimension 20:51

Ergänzungen:
01A.1 Vektorraum, Untervektorraum, Basis, Dimension 32:02
01A.2 Dimension von Kurven, Flächen; Hausdorff-Dimension; Fraktal, Koch-Kurve 25:30
01B.1 Begriff Vektorraum; Vektor aus zwei gegebenen Vektoren bilden 10:29
01B.2 Vektorraum der Polynome; Basis 17:04
01B.3 Vektorraum der sinusförmigen Schwingungen; Zerlegung in sin und cos 9:26
01C.1 Lieferwagen mittels Vektorrechnung füllen 19:38
01C.2 Ausgleichskurve mittels Vektorrechnung 39:21
01C.3 Vektor im R³ in zwei zueinander senkrechte Anteile zerlegen 15:49
01D.1 Vektorrechnung, Länge, Dimension 36:28
01D.2 Vektorrechnung, Basis 19:05
01D.3 Funktionen als Vektoren verstehen 12:38
01D.4 drehbare Feder per Vektorrechnung; Software für Vektorrechnung 30:33


vor dem 6. April 16


Geradengleichung, Skalarprodukt
Skript

Grundlagen:
02.1 Geradengleichungen in Parameterform 15:09
02.2.1 Länge eines Vektors 10:27
02.2.2.1 Skalarprodukt, Teil 1 10:05
02.2.2.2 Skalarprodukt Teil 2, Orthogonalität 24:49

Ergänzungen:
02A.1 Probleme der Geradengleichung mx plus b 9:35
02A.2 Abstand Gerade vom Ursprung mit Ableitung und mit Normale 19:35
02A.3 Abstand Ebene vom Ursprung, aufwendige Form mit Ableitung 14:51
02B.1 Geraden auf Parallelität prüfen 4:25
02B.2 Schnittpunkt zweier Geraden 11:27
02B.3 Schnittmenge Ebene mit xy-Ebene 3:20
02B.4 prüfen, ob Ebene durch Ursprung geht 8:54
02B.5 Winkel mittels Skalarprodukt bestimmen 5:33
02B.6 Dreieck auf Rechtwinkligkeit prüfen 5:20
02B.7 Vektor in yz-Ebene senkrecht zu gegebenem Vektor 7:48
02B.8 Geradengleichung in Normalenform 12:09
02B.9 Parallelogrammidentität; Diagonalen eines Parallelogramms 9:56
02B.10 Winkel zwischen zwei Geraden im R² 5:50


vor dem 11. April 16


Matrizen
Skript

Grundlagen:
03.1_2 Matrizen, Transposition, MATLAB(R) 21:59
03.3 Matrix mal Vektor, Matrix mal Matrix 23:04
03.04_05_06 Skalierung, Drehungsmatrix, Verschiebung 29:40

Ergänzungen:
03A.1 Scherungsmatrix
6:16
03A.2 Rotation um beliebigen Punkt, affine Abbildung, Verschiebungsvektor, Rotationsmatrix 14:04
03B.1 geometrische Wirkung einer Matrix; inverse Matrix 17:54
03B.2 Spiegelung und Drehung nacheinander; Matrizenmultiplikation 7:20
03B.3 Nichtkommutativität des Matrizenprodukts 9:03
03B.4 zwei Spiegelungen nacheinander; Reihenfolge; Matrizenmultiplikation 12:12
03B.5 achte Potenz einer Matrix; Matrizen und komplexe Zahlen 8:44
03B.7 dritte Potenz einer Matrix ist die Einheitsmatrix 3:30
03B.8 Spiegelungsmatrix aus Spiegelungsachse berechnen 11:46
03B.9 Spiegelungsachse aus Punkt und Bild bestimmen 5:20
03B.10 Matrix für Drehung um Hauptdiagonale im Raum 5:44
03B.11 Rezept für Matrizenprodukt 2:33
03C.1 zwei Matrizen, deren Produkt die Nullmatrix ist 6:54
03C.2 Rotationen um 90° im R³ um Koordinatenachsen; mehrere hintereinander 16:52
03C.3 Matrix für Spiegelung an Ebene im R³ 9:53
03D.1 einige Produkte Matrix mal Vektor, Matrix mal Matrix; Transposition 18:35
03D.2 Matrizen für eine Spiegelung im R² und eine Drehung im R³ 15:22
03D.3 Matrix und Verschiebungsvektor für Drehung im R² 17:39
03D.4 Matrix und Verschiebungsvektor für Spiegelung im R³ 17:14


vor dem 12. April 16


Lineare Gleichungssysteme, Rang, Kern
Skript

Grundlagen:
04.01 Lineare Gleichungssysteme, Existenz und Eindeutigkeit von Lösungen 14:08
04.02 Existenz von Lösungen linearer Gleichungssysteme 14:42
04.03 Spaltenraum, Bild, Rang einer Matrix 18:50
04.04 Eindeutigkeit der Lösung, homogenes Gleichungssystem 17:45
04.05 Kern, Defekt einer Matrix 12:25
04.06 Zeilenrang, Spaltenrang, unter-, überbestimmt 25:56

Ergänzungen:
04A.1 Rang, Spaltenraum, Defekt, Kern einer Matrix, lineares Gleichungssystem 23:05
04B.1 Lineare Gleichungssysteme; Lösungen nicht existent oder nicht eindeutig 9:40
04B.2 Spaltenraum, Rang, Defekt einer 2x3-Matrix 21:17
04B.3 Matrix zu gegebenem Spaltenraum finden 2:46
04B.4 Matrix mit Rang 3 mal Matrix mit Rang 1 soll Nullmatrix sein 13:26
04B.5 Beispiel Spaltenraum, Bild, Rang, Kern, Defekt; lineares Gleichungssystem 23:03
04B.6 weiteres Beispiel Spaltenraum, Bild, Rang, Kern, Defekt; lineares Gleichungssystem 12:11
04C.1 Spaltenraum = Bild, Rang, lineares Gleichungssystem an Beispielen 40:29
04C.2 Bild, Rang, Kern, Defekt einer Matrix; lineares Gleichungssystem 19:56
04C.3 unterbestimmtes LGS ohne Lösung; überbestimmtes LGS nicht eindeutig lösbar 8:49
04C.4 Rang, Spaltenraum (Bild), Defekt, Kern einer Matrix an Beispielen 21:25
04C.5 Matrix zu gegebenem Kern 3:48
04C.6 lineares Gleichungssystem zu gegebener Lösungsmenge 10:59
04D.1 lineares Gleichungssystem, Lösungsmenge, Koeffizientenmatrix, Rang usw. 36:44


vor dem 18. April 16


Determinante, Spatprodukt, Vektorprodukt, inverse Matrix
Skript

Grundlagen:
05.1.1 Determinate, Teil 1 14:42
05.1.2 Determinante, Teil 2, Parallelepiped 18:25
05.1.3 Determinante, Teil 3, antisymmetrische Multilinearform 15:54
05.1.4 Determinante, Teil 4, Entwickeln, Sarrus 28:23
05.2 Spatprodukt 3:54
05.3 Vektorprodukt rechnerisch 24:57
05.4 Vektorprodukt geometrisch 22:45
05.5 Produkte mit Vektoren, Zusammenfassung 7:14
05.6 Inverse Matrix 15:18

Ergänzungen:
05A.1 Fläche eines Parallelogramms im R³, Vektorprodukt, Kreuzprodukt 8:43
05A.2 Vektorprodukt auflösbar oder nicht 3:02
05A.3 Trägheitstensor und Drehimpuls mit Vektorprodukt, Spatprodukt, Skalarprodukt 47:22
05B.1 Fläche eines Parallelograms im R² mittels Determinante 5:40
05B.2 eine 3x3-Determinante ausrechnen 5:06
05B.3 eine 4x4-Determinante ausrechnen 14:01
05B.4 Fläche eines Dreiecks im Raum 10:26
05B.5 Vektorprodukt gleich gegebenem Vektor 4:29
05B.6 Gerade senkrecht durch Ebene; Abstand Ebene von Ursprung 13:19
05B.7 Vektor senkrecht zu drei gegebenen im R^4 6:25
05B.8 doppeltes Vektorprodukt; BAC-CAB-Formel 12:40
05C.1 mögliche Werte für Rang, Defekt, Determinante 17:57
05C.2 Determinanten zu Null machen 15:08
05C.3 Vektorprodukt im Vierdimensionalen 13:16
05D.1 Idee der Determinante, Beispiele 2x2, 3x3, 4x4 43:10
05D.2 Determinante, Rang, Defekt 9:40
05D.3 Fläche eines Parallelogramms im R³; Vektorprodukt 14:02
05D.4 Fläche eines Parallelogramms in R²; Determinante 15:07
05D.5 Kern einer 3x3-Matrix mittels Vektorprodukt 11:24


vor dem 19. April 16


Cramer-, Gauss-, Jacobi-Verfahren
Skript

Grundlagen:
06.1 Cramer-Verfahren 16:30
06.2 Gaußsches Eliminationsverfahren 20:48
06.3 Jacobi-Verfahren, iterative Lösung 12:45
06.4 Lineare Gleichungssysteme mit MATLAB(R) und Wolfram Alpha 9:09

Ergänzungen:
06A.1 Lineares Gleichungssystem, Gaußsches Eliminationsverfahren, Cramer-Regel, inverse Matrix
26:22
06A.2 mit Cramer-Regel 3x3-Matrix invertieren 10:43
06A.3 inverse Matrix eines Matrixprodukts 4:45
06B.1 inverse Matrix einer 2x2-Matrix; Gleichungssystem lösen 15:45
06B.2 vier Lösungsverfahren für lineare Gleichungssysteme; Cramer, Gauß, Jacobi, inverse Matrix 29:15
06B.3 Gleichungssystem 2x3; Gaußsches Eliminationsverfahren; Bild, Rang, Kern, Defekt 22:07
06C.1 Begründung für Cramersche Regel 11:18
06C.2 Cramersche Regel schlägt fehl; Gaußsche Elimination 16:27
06C.3 2x2-Gleichungssystem mit inverser Matrix lösen 6:20
06D.1 Cramer-Verfahren am Beispiel; Begründung 18:39
06D.2 Cramer-Verfahren 4x4; Software 9:57
06D.3 Gaußsches Eliminationsverfahren am Beispiel 11:37


vor dem 25. April 16


Eigenvektoren
Skript

Grundlagen:
07.1 Eigenwerte, Eigenvektoren 11:11
07.2 Anwendungen von Eigenvektoren 16:51
07.3 Bestimmung von Eigenwerten 25:45

Ergänzungen:
07A.1 Eigenwerte, Eigenvektoren bestimmen; charakteristisches Polynom 34:21
07A.2 Eigenwerte, Eigenvektoren symmetrischer Matrizen 10:21
07B.1 Eigenwerte einer 3x3-Matrix 15:07
07B.2 Eigenvektoren von 2x2- und 3x3-Matrizen bestimmen 14:37
07B.3 Matrix zu Eigenvektor und Eigenwert bestimmen 5:22
07B.4 Eigenwerte einer 2x2-Drehungsmatrix 2:03
07B.5 Eigenwerte und Eigenvektoren einer 3x3-Matrix 23:15
07B.6 Eigenwerte mit Spur und Determinante prüfen 8:32
07B.7 Eigenwerte einer 3x3-Matrix; Test mit Spur und Determinante 5:39
07B.8 Eigenvektor zu einer 3x3-Matrix; Eigenwert gegeben 11:36
07B.9 Eigenwerte, Eigenvektoren einer 2x2-Matrix 9:06
07C.1 Eigenwerte, Eigenvektoren einer 3x3- und einer 4x4-Matrix 40:00
07C.2 Eigenwerte und Eigenvektoren von Spiegelung und Drehungen im R² und im R³ 20:21


vor dem 26. April 16


Dynamische Systeme
Skript
Material

Grundlagen:
08.1_2 Dynamische Systeme, logistische Gleichung 26:59
08.3 Typen von Differentialgleichungen 18:05
08.4 Vektorfelder, Lösungskurven im Phasenraum 22:51

Ergänzungen:
08A.1 Differentialgleichungen klassifizieren, linear, homogen, konstante Koeffizienten, Ordnung 27:36
08A.2 Schaltungssimulator im Browser, Circuit Lab 5:18
08B.1 SIR-Modell für Infektionsausbreitung; Differentialgleichungen 30:15
08C.1 sieben einfache Differentialgleichungen 29:39
08C.2 Differentialgleichung für Widerstand und Kondensator an Netzspannung 26:47
08C.3 komplexe Widerstände statt Differentialgleichungen 43:11
08D.1 einige einfache Differentialgleichungen 22:45
08D.2 Schleppkurve (Traktrix); Differentialgleichung aufstellen 10:20


vor dem 2. Mai 16


Lineare Differentialgleichungen erster und zweiter Ordnung
Skript

Grundlagen:
09.1_2 Lösung durch Ansatz, homogene lineare DGL 1. Ordnung 12:59
09.3 inhomogene lineare DGL 1. Ordnung 13:43
09.4 Variation der Konstanten 9:22
09.5 homogene lineare DGL 2. Ordnung 32:03
09.6 inhomogene lineare DGL 2. Ordnung 9:16

Ergänzungen:
09A.1 Ladekurve Kondensator, inhomogene lineare Differentialgleichung 1. Ordnung 34:32
09A.2 homogene lineare Differentialgleichung 2. Ordnung, Spezialfall 6:36
09A.3 vertikaler Wurf (senkrechter Wurf), inhomogene lineare Differentialgleichung 13:45
09A.4 Massenwirkungsgesetz, Differentialgleichungssystem 6:38
09A.5 Lotka-Volterra, Räuber-Beute-Modell, Differentialgleichungssystem 12:17
09A.6 Differentialgleichung mit Randbedingungen; quantenmechanisches Teilchen im Potentialtopf 11:04
09B.1 lineare Differentialgleichungen; Begriffe; Beispiel 15:47
09B.2 homogene lineare Differentialgleichung mit konstanten Koeffizienten 7:08
09B.3 inhomogene lineare Differentialgleichung mit konstanten Koeffizienten 15:42
09B.4 inhomogene lineare Differentialgleichung; Sonderfall 3:10
09B.5 inhomogene lineare Differentialgleichung; Anfangsbedingungen 16:00
09B.6 inhomogene lineare Differentialgleichung, Sonderfall 9:01
09B.7 inhomogene lineare Differentialgleichung 3. Ordnung 3:10
09B.8 inhomogene lineare Differentialgleichung; Verhalten im Unendlichen 14:51
09B.9 Baumwachstum mit Differentialgleichung simulieren; nichtlineare DGL 16:57
09C.1 inhomogene lineare Differentialgleichung 1. Ordnung mit konstanten Koeffizienten 19:54
09C.2 inhomogene lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten 16:19
09D.1 lineare Differentialgleichung 2. Ordnung, zwei Spezialfälle 59:25
09D.2 komplexe Exponenten bei linearer Differentialgleichung 2. Ordnung 10:35
09D.3 Differentialgleichung mit Lösungen e^x und e^-x 3:37


vor dem 3. Mai 16


Differentialgleichungen mit trennbaren Variablen
Skript

Grundlagen:
10 Differentialgleichungen mit trennbaren Variablen 14:25

Ergänzungen:
10A.1 Differentialgleichung mit trennbaren Variablen, Beispiel
5:03
10A.2 logistische Differentialgleichung, Differentialgleichung mit trennbaren Variablen 25:39
10B.1 Differentialgleichung zum Üben 9:57
10B.2 Differentialgleichung zum Üben 10:01
10B.3 Differentialgleichung zum Üben 2:27
10B.4 Differentialgleichung zum Üben 5:17
10B.5 Differentialgleichung zum Üben 19:09
10B.6 Differentialgleichung zum Üben; Abklingen oder Anwachsen 3:22
10B.7 Differentialgleichung zum Üben; Abklingen oder Anwachsen 6:08
10B.8 Differentialgleichung zum Üben 7:27
10B.9 Differentialgleichung zum Üben 6:55
10B.10 Differentialgleichung zum Üben; Abklingen oder Anwachsen 5:16
10B.11 Differentialgleichung zum Üben 7:14
10B.12 Differentialgleichung zum Üben 5:58
10B.13 Differentialgleichung zum Üben 7:11
10B.14 Differentialgleichung zum Üben 3:14
10B.15 Klassifikation von Differentialgleichungen 14:53
10B.16 Differentialgleichung zum Üben 11:53
10B.17 Differentialgleichung zum Üben 6:42
10C.1 zwei Differentialgleichungen zum Üben 23:11
10C.2 zwei Differentialgleichungen zum Üben 7:35
10C.3 vier Differentialgleichungen zum Üben 31:27
10C.4 Differentialgleichung zum Üben; reelle und komplexe Lösungen 17:47
10D.1 Differentialgleichung zum Üben 6:46


vor dem 9. Mai 16


Euler-Verfahren, symplektische Verfahren
Skript

Grundlagen:
11.1 numerische Lösung von Differentialgleichungen 16:14
11.2_3 explizites, implizites Euler-Verfahren 20:22
11.4 symplektisches Verfahren 16:17
Material

Ergänzungen:
11A.1 Lotka-Volterra, Differentialgleichung numerisch lösen, Räuber-Beute
17:09
neues Material
11A.2 Stabilität von Differentialgleichungslösern, A-Stabilität, explizites Euler-Verfahren 13:16
11B.1 Satellitenorbit; Euler-Verfahren, numerische Lösung von Differentialgleichungen 25:23
weiteres neues Material
11C.1 Widerstand und Kondensator an Netzspannung analytisch und numerisch 45:09
11C.2 Die Diode in diesem numerischen Modell wird Elektrotechnikern nicht gefallen 36:52
11D.1 Van-der-Pol-Differentialgleichung und harmonischer Oszillator 42:41


vor dem 10. Mai 16


Differentialgleichungen höherer Ordnung, Lösung mit Standardsoftware
Skript

Grundlagen:
12.1 Differentialgleichungen höherer Ordnung 13:15
12.2 Differentialgleichungen in MATLAB(R) 6:34

Ergänzungen:
12A.1 homogene Differentialgleichung vierter Ordnung 8:59
12A.2 Differentialgleichung höherer Ordnung in DGL-System erster Ordnung umwandeln 6:45
12B.1 Differentialgleichung 3. Ordnung in DGL-System 1. Ordnung umwandeln 6:44
12C.1 Differentialgleichung dritter Ordnung in Differentialgleichungssystem erster Ordnung umwandeln 9:24
12D.1 eine Differentialgleichung 3. Ordnung 17:26
12D.2 eine Differentialgleichung 4. Ordnung 8:06


vor dem 16. Mai 16


Algebraische Lösung von Differentialgleichungen
Skript

Grundlagen:
13.1 Differentialgleichungen mit Eigenvektoren lösen 29:41
13.2 Exponentialfunktion von Matrizen 26:09
13.2a Lösungsverfahren Differentialgleichungen 11:57

Ergänzungen:
13A.1 lineare Differentialgleichung als DGL-System mit Eigenwerten und Eigenvektoren lösen
20:19
13A.2 Rotationsmatrix in 3D per Differentialgleichungssystem, Exponentialfunktion von Matrizen 16:39
13B.1 Exponentialfunktion von Matrix; Differentialgleichungssystem dazu 18:14
13B.2 lineares Differentialgleichungssystem mit Vektoren lösen 10:38
13B.3 Differentialgleichung 2. Ordnung mittels Matrix lösen 6:57
13D.1 zweimal Kondensator und Widerstand, Differentialgleichungssystem; Teil 1 29:38
13D.2 zweimal Kondensator und Widerstand, Differentialgleichungssystem; Teil 2 22:47


vor dem 17. Mai 16


Schmiegeparabel, Taylor-Polynome
Skript

Grundlagen:
14.1 Tangentengerade, Schmiegeparabel, Taylor-Polynome 14:39
14.2 Taylor-Polynom für Wurzelfunktion 12:45
14.3.1 Taylor-Reihe, Potenzreihen, Teil 1 17:25
14.3.2 Taylor-Reihe, Potenzreihen, Teleskopsumme, Teil 2 19:41

Ergänzungen:
14A.1 kubische Wurzel mit Schmiegeparabel nähern, Taylor-Polynom 16:21
14A.2 nichtlineare Gleichung mit Schmiegeparabel in quadr. Gleichung umwandeln, Taylor 12:14
14A.3 Divergenz der harmonischen Reihe mit Integral zeigen 6:56
14B.1 Taylor-Näherung für natürlichen Logarithmus 10:25
14C.1 Diese beiden Wurzeln muss man einfach schätzen, mit Taylor 16:16
14C.2 Warum die übliche Formel für die kinetische Energie falsch ist 7:50
14C.3 Warum die Taylor-Näherung nicht mal rückwärts anwenden? 12:14
14C.4 Integral unlösbar? Pah, hier kommt Taylor! 11:20
14C.5 Hochspannung am Horizont: Dipol nähern 12:25
14C.6 Taylor-Polynom für Produkt zweier Funktionen 15:38
14D.1 Kehrwert der Wurzel(4,01) mit Taylor schätzen 14:19
14D.2 Logarithmus ins Quadrat mit Taylor nähern 5:12
14D.3 mit Taylor e^x = 100 x näherungsweise lösen 28:03
14D.4 mit Taylor x^x = 5 näherungsweise lösen 12:20


vor dem 23. Mai 16


Rest nach Taylor, Potenzreihen
Skript

Grundlagen:
15.1_2 Taylor-Rest, Teil 1 9:30
15.2.2_3 Taylor-Restformel, Teil 2, Abschätzung des Fehlers 28:46
15.4 Taylor-Rest, Beispiel für Fehlerschätzung 8:55
15.5.1 Potenzreihen, Konvergenzradius, Teil 1 14:54
15.5.2 Konvergenzradius, Teil 2 18:07
15.6 Potenzreihen und Analytische Funktionen 12:32
15.7 Differentialgleichungen mit Potenzreihen lösen 12:47

Ergänzungen:
15A.1 Potenzreihe für Arcustangens; Konvergenzradius 42:46
15B.1 Taylor-Näherung und Fehler für Sinusfunktion 17:20
15B.2 Potenzreihe für Logarithmus aus geometrischer Reihe 4:55
15B.3 Potenzreihenansatz für Differentialgleichung; Beispiel Taylorpolynom 13:26
15B.4 Potenzreihenansatz für Differentialgleichung 19:14
15B.5 kubische Wurzel mit Taylorpolynom schätzen; Fehlerschranke 10:34
15C.1 Taylor-Rest mit partieller Integration herleiten 11:40
15C.2 Differentialgleichung mit Potenzreihenansatz knacken 7:47
15D.1 Potenzreihenansatz für Van-der-Pol-Differentialgleichung 25:57
15D.2 Potenzreihe für 1 durch 3+x², Konvergenzradius 14:54


vor dem 24. Mai 16


Fourier-Reihe mit komplexer Exponentialfunktion
Skript

Grundlagen:
16.1 Fourier-Reihe, Spectrum Analyzer 18:32
16.2 Raum der Funktionen mit Periode 1, Skalarprodukt, RMS 22:27
16.3 komplexe Fourier-Reihe 24:33
16.4. Vollständigkeit der Fourier-Basis 6:25
16.5 komplexe Fourier-Reihe, beliebige Periode 11:53

Ergänzungen:
16A.1 Jede (übliche) periodische Funktion lässt sich als Fourier-Reihe schreiben; Delta-Funktion
26:48
16A.2 Vektorraum von Funktionen, Norm, Skalarprodukt, Vorbereitung Fourier-Reihe 9:06
16A.3 Fourier-Reihe als Zerlegung von Vektoren; Orthonormalbasis, Skalarprodukt 26:15
16B.1 Beispiel Fourier-Reihe; Bedeutung 41:00
16B.2 Sinusförmige Wechselspannung, Effektivwert 9:35
16B.3 komplexe Fourier-Reihe für Sinus; Effektivwert 24:35
16B.4 komplexe Fourier-Reihe für dreiecksförmige Schwingung 12:18
16B.5 Sägezahnschwingung; Mittelwert, Effektivwert 10:04
16B.6 Fourier-Reihe für verschobene und skalierte Funktion 16:03
16C.1 Beispiel für Fourier-Analyse im Komplexen 39:10
16C.2 Phasenanschnitt; Effektivwert und komplexe Fourier-Reihe, Teil 1 39:49
16C.3 Phasenanschnitt, komplexe Fourier-Reihe, Teil 2 33:28
16D.1 Fourier-Reihe als Zerlegung in Basisvektoren 48:49
16D.2 Beispiel komplexe Fourier-Koeffizienten, Effektivwert 35:15


vor dem 30. Mai 16


Fourier-Reihe mit Sinus und Cosinus, FFT
Skript

Grundlagen:
17.1 Fourier-Reihe mit Sinus und Cosinus 12:16
17.2 Fourier-Koeffizienten für Sinus und Cosinus 23:35
17.3 FFT in MATLAB(R), Window (Fensterfunktion), Hann 25:09

Ergänzungen:
17A.1 Fourier-Reihe einer Rechteckschwingung 25:28
17A.2 Formel für pi aus Fourier-Reihe einer Rechteckschwingung 7:37
17A.3 Fourier-Reihe Dreiecksschwingung; noch eine Formel für pi 16:08
17A.4 Fourier-Reihe Sägezahn mittels Rechteck 14:54
17B.1 Fourier-Reihe mit Cosinus und Sinus für dreiecksförmige Schwingung 12:08
17B.2 Fourier-Reihe mit Cosinus und Sinus für rechteckförmige Schwingung; Effektivwert 15:42
17B.3 Fourier-Reihe mit Cosinus und Sinus für verschobenen Sinus 8:44
17B.4 Fourier-Reihe mit Cosinus und Sinus für asymmetrische Rechteckschwingung 13:48
17C.1 Phasenanschnitt; komplexe und reelle Fourier-Reihe, Teil 3 22:23
17C.2 reelle Fourier-Koeffizienten und Symmetrie 7:06
17C.3 Kurzfassung Fourier-Reihe, reell und komplex 29:13
17D.1 reelle und komplexe Fourier-Reihe im Vergleich 35:52
17D.2 einfache Beispielrechnung für reelle Fourier-Koeffizienten 7:47
17D.3 zwei reelle Fourier-Koeffizienten einer Dreiecksschwingung 22:48
17D.4 Fourier-Koeffizienten der Einweg-gleichgerichteten Sinusschwingung 15:38


vor dem 31. Mai 16


Fourier-Transformation, Laplace-Transformation
Skript

Grundlagen:
18.1_2 Kontinuierliche Fourier-Transformation, Satz von Plancherel 35:32
18.3 Laplace-Transformation 13:09
18.4 Laplace-Transformation von Ableitungen 11:50
18.5 Laplace-Transformation exp, cos, sin 14:59
18.6 Laplace-Transformation von Potenzfunktionen 7:39
18.7 Laplace-Transformation von verzögerten und zeitskalierten Funktionen 10:35
18.8 Fourier-, Laplace-, z-Transformation 4:22

Ergänzungen:
18A.1 Laplace-Transformation von t mal y(t) 13:34
18B.1 Laplace-Transformierte einer Rampe 10:59
18B.2 Laplace-Transformierte einer eingeschalteten sinusförmigen Schwingung 16:42
18B.3 Grenzwert von s mal Laplace-Transformierte 6:55
18B.4 inverse Laplace-Transformation per Partialbruchzerlegung; Beispiel 9:17
18B.5 inverse Laplace-Transformation per Partialbruchzerlegung, Beispiel 11:02
18C.1 Laplace-Transformation von ein, zwei, drei, unendlich vielen Zacken 29:55
18D.1 Laplace-Transformation allgemein und von abgeschnittener Exponentialfunktion 22:08
18D.2 Laplace-Transformation von abgeschnittenem Sinus 9:29
18D.3 Laplace-Transformation von Integral 6:10


vor dem 6. Juni 16


Lösung von Differentialgleichungen per Laplace-Transformation
Skript

Grundlagen:
19.1_2 Differentialgleichungen per Laplace-Transformation lösen 24:24

Ergänzungen:
19A.1 Differentialgleichung per Laplace-Transformation lösen 12:03
19A.2 noch eine Differentialgleichung per Laplace-Transformation lösen 19:54
19B.1 Differentialgleichung per Laplace-Transformation lösen 18:27
19C.1 Differentialgleichungen per Laplace-Transformation lösen 34:24
19D.1 Differentialgleichung per Laplace-Transformation und per Ansatz lösen 29:03
19D.2 noch eine Differentialgleichung per Laplace-Transformation und per Ansatz lösen; Sonderfall 10:33
19D.3 Lage der Polstellen der Laplace-Transformierten 18:40


vor dem 7. Juni 16


Funktionen mehrerer Veränderlicher
Skript

Grundlagen:
20.1_2 Funktionen mehrerer Veränderlicher, Höhenlinien, Kennlinienfeld, MATLAB(R) 32:35

Ergänzungen:
20A.1 Funktionsplot in 3D mit Google 3:08
20A.2 Eierkartonfläche sin(x)sin(y) in 3D zeichnen 13:07
20A.3 Gleichung des idealen Gases plotten, 3D, Höhenlinien, Kennlinienfeld 24:42
20A.4 Allgemeine Potenzfunktion x^y in 3D plotten; Stetigkeit 5:38
20B.1 sin(xy) plotten in 3D, mit Höhenlinien und als Kennlinienfeld 21:56
20C.1 Ohmsches Gesetz als 3D-Fläche, mit Höhenlinien und als Kennlinienfeld 30:08
20D.1 Höhenlinien und Gesamtverlauf von e^(x²/y) als Funktion zweier Veränderlicher 32:12


vor dem 13. Juni 16


Partielle Ableitung, Gradient
Skript

Grundlagen:
21.1 partielle Ableitung, Gradient, MATLAB(R) 27:03
21.2 Tangentialebene, Gradient, totales Differential 14:19

Ergänzungen:
21A.1 Beispiel Höhenlinien, Gradient, partielle Ableitung 13:29
21A.2 Beispiel 2 Höhenlinien, Gradient, partielle Ableitung 9:39
21A.3 totales Differential, Tangentialebene, ideales Gasgesetz 19:07
21B.1 Beispiel partielle Ableitungen, Gradient; Anschauung 14:35
21B.2 weiteres Beispiel Höhenlinien, Gradient; Anschauung 12:57
21B.3 Beispiel Gradient in 2D und 3D; Äquipotentialflächen 29:34
21B.4 Beispiel lineare Näherung in zwei Veränderlichen; Tangentialebene 11:37
21B.5 Beispiel lineare Näherung in zwei Veränderlichen; Tangentialebene; totales Differential 7:06
21B.6 maximale Windenergieausbeute; Tangentialebene; lineare Näherung 13:48
21C.1 elektrisches Feld und Gradient des Potenzials; Punktladung 32:19
21D.1 Beispiele für partielle Ableitungen 9:10
21D.2 Eierkartonfläche, Höhenlinien, Gradient 24:13
21D.3 Funktion zu vier Gradientenvektoren, Sattel, hyperbolisches Paraboloid 11:08
21D.4 lineare Näherung einer Funktion mit zwei Veränderlichen; totales Differential 9:09
21D.5 Tangentialebene an Funktion zweier Veränderlicher; Normalenform 17:51
21D.6 quadratische Funktion zu gegebener Tangentialebene finden 9:33


vor dem 20. Juni 16


Fehlerfortpflanzung, Extrema von Funktionen mehrerer Veränderlicher
Skript

Grundlagen:
22.1 Fehlerfortpflanzung, Größtfehler 20:50
22.2 Fehlerfortpflanzung, Standardabweichung 25:03
22.3 Extrema von Funktionen zweier Veränderlicher, Hesse-Matrix 31:18

Ergänzungen:
22A.1 Fehlerfortpflanzung, Größtfehler, Funktion zweier Veränderlicher 18:30
22A.2 Fehlerfortfplanzung, Standardabweichung, Funktion zweier Veränderlicher 16:37
22A.3 lokale Maxima, Minima einer Funktion zweier Veränderlicher; Hesse-Matrix 19:24
22A.4 nochmal lokale Maxima, Minima einer Funktion zweier Veränderlicher; Hesse-Matrix 15:36
22A.5 Kriterium für positive Eigenwerte der 2x2-Hesse-Matrix 10:37
22A.6 Globales Maximum einer Funktion von zwei Veränderlichen; Werte am Rand 10:44
22B.1 lokale Minima, Maxima bei zwei Veränderlichen; Beispiel 21:12
22C.1 Beispiel Größtfehler und Standardabweichung bei zwei Veränderlichen 20:21
22C.2 lokale Minima und Maxima einer Funktion zweier Veränderlicher 10:29
22C.3 lokale Minima und Maxima noch einer Funktion zweier Veränderlicher 12:04
22C.4 lokales Extremum einer Funktion dreier Veränderlicher 13:10
22C.5 Lokales Maximum oder Minimum einer Funktion zweier Veränderlicher 12:31
22D.1 Fehlerrechnung für Volumen einer Dose 32:09
22D.2 Beispiel für lokale Minima, Maxima einer Funktion zweier Veränderlicher 6:45


vor dem 21. Juni 16


Polar-, Zylinder- und Kugelkoordinaten
Skript

Grundlagen:
23.1_2 Polarkoordinaten 16:20
23.3 Zylinderkoordinaten 5:26
23.4 Kugelkoordinaten, geografische Länge und Breite 23:44

Ergänzungen:
23B.1 Funktion in Polarkoordinaten bzw. kartesischen Koordinaten 6:37
23B.2 Ellipse in Polarkoordinaten und kartesischen Koordinaten 18:22
23B.3 Ebene in sphärischen Koordinaten 14:58
23B.4 Gradient in Polarkoordinaten 20:41
23C.1 Länge Luftlinie Bielefeld-Hamburg mit sphärischen Koordinaten 35:58
23C.2 Kurs Bielefeld-Hamburg mit sphärischen Koordinaten 30:51
23D.1 Kardioide in Polarkoordinaten 35:10


vor dem 27. Juni 16


Mehrdimensionale Integrale
Skript

Grundlagen:
24.1 Mehrdimensionale Integrale 15:11
24.2 Berechnung kartesischer Mehrfachintegrale 11:38
24.3 Integration in Polarkoordinaten, Kreisfläche 19:05
24.4 Integration in Kugelkoordinaten, Kugelvolumen 21:17
24.5 Kurvenintegral 9:21

Ergänzungen:
24A.1 Beispiel Doppelintegral, Volumen zwischen Funktionsfläche und Dreieck 10:20
24A.2 Volumen unter Paraboloid, Doppelintegral in Polarkoordinaten 13:51
24A.3 Fläche unter Gauß-Glocke; Normalverteilung; Doppelintegral in Polarkoordinaten 9:27
24B.1 Beispiel Doppelintegral 17:15
24B.2 Doppelintegral in Polarkoordinaten und kartesischen Koordinaten 14:04
24C.1 Volumen zwischen Dreieck und Paraboloid; Doppelintegral 15:35
24C.2 Flächeninhalt einer Schnecke; Polarkoordinaten 11:45
24C.3 Volumen eines Kegelstumpfs mit Dreifachintegral und Zylinderkoordinaten 29:25


28.06.16


Klausurvorbereitung