Fast but Detailed
Folds and Wrinkles
on Graphics Hardware

Jorn Loviscach

Hochschule Bremen
jlovisca@informatik.hs-bremen.de

www.L7H.cnh

Objective

*Plausible wrinkles and folds
*On coarse meshes
*[Fast

2 of 24

Outline

*Short Intro to GPU Programming
* Approaches to Cloth Simulation
*Overview of the Method

*Preparing the Mesh

*Deforming the Mesh
*Determining the Fold Vector Field
* Generating the Height Field
*Rendering

*Results
*Outlook

3 of 24

Short Intro to GPU Programming
Programmability features
in current graphics hardware;

*\VVertex shader:
deformation, pre-computations

*Pixel shader: texturing, bumps, etc.

4 of 24

Approaches to Cloth Simulation

Full Physical Dynamics
7 Stunning results if done right
N High-dimensional stiff PDEs
N Non-robust collision detection

Kinematics
= Shape depends only on deformation

7 Fast and plausible if done right
N Large folds difficult
N No temporal variation

5 of 24

Overview of the Method

*Input coarsely tessellated surface

*Deform using standard methods,
e.g., matrix palette skinning

*Determine per vertex: strength and
direction of local contraction

* Compute oscillating height field

*Render through pixel shader:
lighting, texture deformation

6 of 24

Overview of the Method

All done

in four
rendering
passes

(= pairs of
vertex and
pixel shaders)

Original
Fnﬁg:tinn Skin _T> Position
Unified \
Vertices \ Normal
___.-l-"'
Crush k
rus
Adjacency — - ~_ \
~h
Crush
Color /
Relax ‘-*
e \ Phase
Triangle \

P» Screen

Vertices ," Render

7 of 24

Preparing the Mesh

*Collect adjacency data
in @ pseudo-texture

*Unify vertices
along texture seams

8 of 24

Deforming the Mesh

*Standard matrix palette skinning

* X file from standard 3D software:

mesh, skeleton, bone weights,
bone animation

*Matrix palette prepared by CPU

*\Vertex Shader evaluates
weighted sum

*Positions and normals stored in
pseudo-textures for later use

9 of 24

Determining the Fold Vector Field

For every vertex:

°Linear approx. M of local deformation

*Find direction and amount of
strongest contraction, eigenanalysis
of M'M

neighbor
vertices

before deformation after deformation

10 of 24

Determining the Fold Vector Field
How to produce folds for the rest pose?

Bias the computation of the linear
approximation M;
M > M(E-qlq),

where q gives direction and amount.

User interface: 3D painting.

11 of 24

Determining the Fold Vector Field

Result:
A tangent vector at every vertex,
direction = strongest contraction,
length = amount of folding

N

\
///' \A ’
/

Local plane waves!

12 of 24

Generating the Height Field

Height h of fold
depends on width
of uncompressed fold

h

rW Wi2

Real-time control on W

13 of 24

Generating the Height Field

Form a plane wave around every vertex:

h(X) = N4 COS (%;;qu (X—XA) —I—(I)A)

Evaluate h with linear interpolation
in post-deform space: o
hx') = OchAcos<WkA (x’—xﬁ)—l—%)

2T
+Bhpcos (o kB : (x’ = x};) S ¢B>

Generating the Height Field

Problem: The phases of the local

plane waves are not yet determined.

Solution: Relax the phases
to diminish local misfit.

This is no longer pure kinematics!

15 of 24

Rendering

Want to render coarse polygons
and fake folds simply with coloring

Two issues to address:

*Texture. Deform the texture as
though there was curvature.

*Lighting. Adjust the normal vector
per pixel.

16 of 24

Render

INg:

Texture Deformation

Principle similar to Parallax Mapping

h(x')

A

Height Field

Base Polygon

17 of 24

Rendering:
Texture Deformation

Problem: bad artifacts

in particular near the horizon

Solution (partialfif’y):
Limit the deformation

18 of 24

Rendering:
Illumination

Bump map with dynamic (!) height field

9 h(mx)
Need the Normal of Height Field
gradient n’

f h.
’ ﬁ{x'}\

X Height Field

Ground Plane

19 of 24

Rendering:
Illumination

Built-in gradient command of HLSL
produces blocks of 2x2 plxels

Thus: Compute the gradient from
the wave's equation.

20 of 24

Rendering:
Arbitrary Fold Profiles

*height: cosine o

h(x) =nh S (x— x4
*gradient: sine (x) ACOS(W A (X—Xa)+ 04
Replace each with a 1D texture lookup:

arbitrary profile.

Has to be symmetric, though.
(Fold vector field only determined
up to sign!)

)

21 of 24

Results

Name # Vertices | # Pixels (average) | 1ps
Shirt 455 ~ 330.000 | 328
Zeppelin 508 ~ 260.000 | 540
Curtain 02 ~ 505.000 | 537
Stage # Shader instructions Contribution
Vertex Pixel A B
Skin 13M + 20 2 | 0.06ms | 0.25 ms
Crush 8 | 28N+102 | 0.08 ms | 1.83 ms
Relax 7 33N+23 | 0.1l ms | 1.75 ms
Render 67 47 | 3.11ms | 5.01 ms
Total time incl. non-shader part 3.45ms | 8.90 ms

M = #Bones; N = #Neighbors

A: 1 Mpix, 100 verts; B: 55 kPix, 50 kVerts

22 of 24

Outlook

*Introduce irreqgularities, e.qg., through
additional textures

*Combine with physical dynamics of
coarse mesh

*Use geometry shaders (upcoming
in DirectX 10) to access neighbor
vertices

23 of 24

Thanks for your attention!

Questions?

24 of 24

