
1
 o

f 
2
4

Fast but Detailed
Folds and Wrinkles
on Graphics Hardware

Jörn Loviscach
Hochschule Bremen
jlovisca@informatik.hs-bremen.de
www.L7H.cn



2
 o

f 
2
4

Objective

●Plausible wrinkles and folds
●On coarse meshes
●Fast

Demo



3
 o

f 
2
4

Outline

●Short Intro to GPU Programming
●Approaches to Cloth Simulation 
●Overview of the Method
●Preparing the Mesh
●Deforming the Mesh
●Determining the Fold Vector Field
●Generating the Height Field
●Rendering
●Results
●Outlook



4
 o

f 
2
4

Short Intro to GPU Programming

Programmability features
in current graphics hardware:

●Vertex shader:
deformation, pre-computations

●Pixel shader: texturing, bumps, etc.

Demo



5
 o

f 
2
4

Approaches to Cloth Simulation

Full Physical Dynamics
Stunning results if done right
High-dimensional stiff PDEs
Non-robust collision detection

Kinematics
= Shape depends only on deformation
Fast and plausible if done right
Large folds difficult
No temporal variation



6
 o

f 
2
4

Overview of the Method

● Input coarsely tessellated surface
●Deform using standard methods, 
e.g., matrix palette skinning

●Determine per vertex: strength and 
direction of local contraction

●Compute oscillating height field
●Render through pixel shader: 
lighting, texture deformation

Demo



7
 o

f 
2
4

Overview of the Method

All done
in four
rendering
passes
(= pairs of
vertex and
pixel shaders)



8
 o

f 
2
4

Preparing the Mesh

●Collect adjacency data
in a pseudo-texture

●Unify vertices
along texture seams 
Demo



9
 o

f 
2
4

Deforming the Mesh

●Standard matrix palette skinning
● .x file from standard 3D software: 
mesh, skeleton, bone weights,
bone animation

●Matrix palette prepared by CPU
●Vertex Shader evaluates
weighted sum

●Positions and normals stored in 
pseudo-textures for later use



1
0
 o

f 
2
4

Determining the Fold Vector Field

For every vertex:
●Linear approx. M of local deformation
●Find direction and amount of 
strongest contraction, eigenanalysis 
of MT M

before deformation after deformation

vertex

neighbor 
vertices



1
1
 o

f 
2
4

Determining the Fold Vector Field

How to produce folds for the rest pose?

Bias the computation of the linear 
approximation M:
M  M(E–q⊗q),
where q gives direction and amount.

User interface: 3D painting.

Demo



1
2
 o

f 
2
4

Determining the Fold Vector Field

Result:
A tangent vector at every vertex,
direction = strongest contraction,
length = amount of folding

Local plane waves!



1
3
 o

f 
2
4

Generating the Height Field

Height h of fold
depends on width
of uncompressed fold

Real-time control on W
Demo



1
4
 o

f 
2
4

Generating the Height Field

Form a plane wave around every vertex:

Evaluate h with linear interpolation
in post-deform space:



1
5
 o

f 
2
4

Generating the Height Field

Problem: The phases of the local
plane waves are not yet determined.

Solution: Relax the phases
to diminish local misfit.

This is no longer pure kinematics!

Demo



1
6
 o

f 
2
4

Rendering

Want to render coarse polygons
and fake folds simply with coloring

Two issues to address:
●Texture. Deform the texture as 
though there was curvature.

●Lighting. Adjust the normal vector 
per pixel.

Demo



1
7
 o

f 
2
4

Rendering:
Texture Deformation

Principle similar to Parallax Mapping



1
8
 o

f 
2
4

Rendering:
Texture Deformation

Problem: bad artifacts
in particular near the horizon

Solution (partially):
Limit the deformation



1
9
 o

f 
2
4

Rendering:
Illumination

Bump map with dynamic (!) height field

Need the
gradient
of h.



2
0
 o

f 
2
4

Rendering:
Illumination

Built-in gradient command of HLSL
produces blocks of 2x2 pixels.

Thus: Compute the gradient from
the wave's equation.



2
1
 o

f 
2
4

Rendering:
Arbitrary Fold Profiles

●height: cosine
●gradient: sine

Replace each with a 1D texture lookup:
arbitrary profile.

Has to be symmetric, though.
(Fold vector field only determined
up to sign!)

Demo



2
2
 o

f 
2
4

Results

M = #Bones; N = #Neighbors
A: 1 Mpix, 100 verts; B: 55 kPix, 50 kVerts



2
3
 o

f 
2
4

Outlook

● Introduce irregularities, e.g., through 
additional textures

●Combine with physical dynamics of 
coarse mesh

●Use geometry shaders (upcoming
in DirectX 10) to access neighbor 
vertices



2
4
 o

f 
2
4

Thanks for your attention!

Questions?


