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Objective

*Plausible wrinkles and folds
*On coarse meshes
*[Fast
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Outline

*Short Intro to GPU Programming
* Approaches to Cloth Simulation
*Overview of the Method

*Preparing the Mesh

*Deforming the Mesh
*Determining the Fold Vector Field
* Generating the Height Field
*Rendering

*Results
*Outlook
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Short Intro to GPU Programming
Programmability features
in current graphics hardware;

*\VVertex shader:
deformation, pre-computations

*Pixel shader: texturing, bumps, etc.

4 of 24



Approaches to Cloth Simulation

Full Physical Dynamics
7 Stunning results if done right
N High-dimensional stiff PDEs
N Non-robust collision detection

Kinematics
= Shape depends only on deformation

7 Fast and plausible if done right
N Large folds difficult
N No temporal variation
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Overview of the Method

*Input coarsely tessellated surface

*Deform using standard methods,
e.g., matrix palette skinning

*Determine per vertex: strength and
direction of local contraction

* Compute oscillating height field

*Render through pixel shader:
lighting, texture deformation
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Overview of the Method

All done

in four
rendering
passes

(= pairs of
vertex and
pixel shaders)
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Preparing the Mesh

*Collect adjacency data
in @ pseudo-texture

*Unify vertices
along texture seams
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Deforming the Mesh

*Standard matrix palette skinning

* X file from standard 3D software:

mesh, skeleton, bone weights,
bone animation

*Matrix palette prepared by CPU

*\Vertex Shader evaluates
weighted sum

*Positions and normals stored in
pseudo-textures for later use
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Determining the Fold Vector Field

For every vertex:

°Linear approx. M of local deformation

*Find direction and amount of
strongest contraction, eigenanalysis
of M'M

neighbor
vertices

before deformation after deformation
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Determining the Fold Vector Field
How to produce folds for the rest pose?

Bias the computation of the linear
approximation M;
M > M(E-qlq),

where q gives direction and amount.

User interface: 3D painting.
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Determining the Fold Vector Field

Result:
A tangent vector at every vertex,
direction = strongest contraction,
length = amount of folding
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Local plane waves!
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Generating the Height Field

Height h of fold
depends on width
of uncompressed fold

h

rW Wi2

Real-time control on W
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Generating the Height Field

Form a plane wave around every vertex:

h(X) = N4 COS (%;;qu (X—XA) —I—(I)A)

Evaluate h with linear interpolation
in post-deform space: o
hx') = OchAcos<WkA (x’—xﬁ)—l—%)
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Generating the Height Field

Problem: The phases of the local

plane waves are not yet determined.

Solution: Relax the phases
to diminish local misfit.

This is no longer pure kinematics!
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Rendering

Want to render coarse polygons
and fake folds simply with coloring

Two issues to address:

*Texture. Deform the texture as
though there was curvature.

*Lighting. Adjust the normal vector
per pixel.
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Render

INg:

Texture Deformation

Principle similar to Parallax Mapping

h(x')

A

Height Field

Base Polygon
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Rendering:
Texture Deformation

Problem: bad artifacts

in particular near the horizon

Solution (partialfif’y):
Limit the deformation
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Rendering:
Illumination

Bump map with dynamic (!) height field

9 h(mx)
Need the Normal of Height Field
gradient n’

f h.
’ ﬁ{x'}\

X Height Field

Ground Plane
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Rendering:
Illumination

Built-in gradient command of HLSL
produces blocks of 2x2 plxels

Thus: Compute the gradient from
the wave's equation.
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Rendering:
Arbitrary Fold Profiles

*height: cosine o

h(x) =nh S (x— x4
*gradient: sine (x) ACOS(W A (X—Xa)+ 04
Replace each with a 1D texture lookup:

arbitrary profile.

Has to be symmetric, though.
(Fold vector field only determined
up to sign!)

)
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Results

Name # Vertices | # Pixels (average) | 1ps
Shirt 455 ~ 330.000 | 328
Zeppelin 508 ~ 260.000 | 540
Curtain 02 ~ 505.000 | 537
Stage # Shader instructions Contribution
Vertex Pixel A B
Skin 13M + 20 2 | 0.06ms | 0.25 ms
Crush 8 | 28N+102 | 0.08 ms | 1.83 ms
Relax 7 33N+23 | 0.1l ms | 1.75 ms
Render 67 47 | 3.11ms | 5.01 ms
Total time incl. non-shader part 3.45ms | 8.90 ms

M = #Bones; N = #Neighbors

A: 1 Mpix, 100 verts; B: 55 kPix, 50 kVerts
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Outlook

*Introduce irreqgularities, e.qg., through
additional textures

*Combine with physical dynamics of
coarse mesh

*Use geometry shaders (upcoming
in DirectX 10) to access neighbor
vertices
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Thanks for your attention!

Questions?
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