Motion Blur for Textures
by Means of Anisotropic
Filtering

JOorn Loviscach
Hochschule Bremen

I

”;
//
b
v

Motion blur is often needed
for (nearly) flat objects
with or without cookie-cutting:

* terrains

* billboards

* spoke wheels
* sword blades
® air-screws

¥y 7SR
Introduction: Motion Blur /pA. s

Motion blur is often needed , A1
for (nearly) flat objects (oo 77
with or without cookie-cutting:

* terrains

* billboards

* spoke wheels
* sword blades
® air-screws

Apply
motion blur
only to texture! &=

Introduction: tex2D

tex2D instruction of HLSL.:
footprint for anisotropic filtering
may be passed as parameter

100*tex2D(samp, uv, 10QFtex2D(samp, uy,
float2(0.1, 0.0), % flogt2(0.2 8.5),
float2(- 0.2)) *© fl@at2(0.08F@.0))

M_a‘Anisotropy =‘6

tex2D(samp, uv,
float2(0.0, 0.0),
float2(0.0, 0.0))

100*tex2D(samp, uv,
float2(0.2,0.5),
float2(0850.0))

JINjg UOIIOW :YDBDISIAOT [

¥ 9pIS

Introduction: tex2D tex2D(samp, uv,
float2(0.0, 0.0),
float2(0.0, 0.0))

tex2D instruction of HLSL.:
footprint for anisotropic filtering
may be passed as parameter

100*tex2D(samp, uv, 10QFtex2D(samp, uy, 100*tex2D(samp, uv,
float2(0.1, 0.0), % flogt2(0.2 8.5), float2(0.2,80.5),
float2(- 0.2)) °© fl@at2(0.08F@.0)) float2(0:850.0))

Ma’Anisotropy =‘6

Motion blur with tex2D: Examples

JINjg UOIIOW :YDBDISIAOT [

S 9plIs

Outline

* Related work

* Motion blur in texture coordinates

* Combining spatial and temporal aniosotropy
* Shader-based implementation

* Results

* Conclusion and Outlook

JINjg UOIIOW :YDBDISIAOT [

9 aplIs

Related Work

Standard technique for real-time motion blur
of 3D objects, including non-flat ones:

Extrude geometry along direction of motion;
optionally apply motion blur to texture

by temporal supersampling.

[e.g., Green 2003]

T

SIAOT

JNjg UooW :yoed

L 3pls

Related Work

Standard technique for real-time motion blur
of 3D objects, including non-flat ones:

Extrude geometry along direction of motion;
optionally apply motion blur to texture

by temporal supersampling.

[e.g., Green 2003]

Texture-based, but limited to a small set of
precomputed directions and speeds:

Pre-blurred textures for terrains [Hargreaves 2004]

T

SIAOT

JNjg UooW :yoed

8 9plIs

Motion Blur in Texture Coordinates

JINjg UOIIOW :YDBDISIAOT [

6 9PlS

Screen
Determine temporal paes .
change of uv coordinates n+1
for a fixed screen pixel. Framé n

World

Space (M+AM)(p+Ap)

)y’ +V+AV
£ \/iewer

Motion Blur in Texture Coordinates

Screen
Determine temporal paes .
change of uv coordinates n+1
for a fixed screen pixel. Framé n
World
Space (M+AM)(p+Ap)
r:=Mp-+v AV
Mp+v
S :=AMp+Av
£ \/iewer
—1T
Au _ M " "n "
= —UM lSI(1T) UM 'r
Av (M—1Tn) -r

JINjg UOIIOW :YDBDISIAOT [

0T =pls

Spatial and Temporal Aniosotropy

* Incorporate spatial
anisotropic filtering, too

* ddx, ddy instructions:
pre-image of screen pixel

* Combine with motion blur:
unified footprint
to average over

Texture
Space

Footprint

JINjg UOIIOW :YDBDISIAOT [

TT SPIS

Spatial and Temporal Aniosotropy

Texture
i Space
* Incorporate spatial

anisotropic filtering, too

* ddx, ddy instructions:
pre-image of screen pixel

* Combine with motion blur:
unified footprint
to average over

Model: a, 3, y random variables

(fj) +aax(j) +Bay(’;j) +v(‘2§f)

For tex2D convert into ¢, f, g, h:

(5) +e () +8(5)

Footprint

T

SIAOT

JNjg UooW :yoed

¢T 3pls

Shader-Based Implementation

Variant 1: heavily pixel-based
& works with large polygons
¢ pixel shader of 30 instructions

(M 1Th) .« -
(A“> — UM '§FE D-S0Mm Iy
AV (M_“n)-l

T

SIAOT

JNjg UooW :yoed

€T apls

Shader-Based Implementation

Variant 1: heavily pixel-based
& works with large polygons
¢ pixel shader of 30 instructions

(M 1Th) .« -
(A“> — UM '§FE D-S0Mm Iy
AV (M_“n)-l

Variant 2: heavily vertex-based
& short pixel shader
¢ requires small polygons

Basic idea: Compute footprint in vertex shader

Problems that had to be solved:
* How to interpolate the footprint?

* No ddx/ddy instructions in vertex shader

T

IAOT

JNjg Uolo|W :yoeos

7T 9pPIS

Results

Artifacts look different from
standard multiple rendering:

Multiple
rendering
O

T

SIAOT

JNjg UooW :yoed

ST a{pls

Results

Speed comparable to that
of a very fast and non-general
implementation of multiple rendering:

Pixel-Based 4:1

8:1

16:1

Vertex-Based 8:1
16: 1

Mult. Rendering 16x
32X

Frames per Second 0 40

80

120

160

T

SIAOT

JNjg UooW :yoed

9T 3plS

Conclusion and Outlook

Features of the proposed method:
* Natural unification of spatial and temporal filtering
* One pass; no deep color buffer needed

* Efficiency still close to multiple rendering.
Future optimizations in anisotropic filtering?

* Covers some types of 3D objects that are vital for
real-time applications

JINjg UOIIOW :YDBDISIAOT [

LT 3pls

Conclusion and Outlook

Features of the proposed method:
* Natural unification of spatial and temporal filtering
* One pass; no deep color buffer needed

* Efficiency still close to multiple rendering.
Future optimizations in anisotropic filtering?

* Covers some types of 3D objects that are vital for
real-time applications

Possible future work:
* Include lighting
* Handle time-varying deformation
* Combine with methods based on extrusion

JINjg UOIIOW :YDBDISIAOT [

0¢ =pIs

