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Abstract

The simulation of complex layers of folds of cloth can be handled through algorithms which take the physical

dynamics into account. In many cases, however, it is sufficient to generate wrinkles on a piece of garment which

mostly appears spread out. This paper presents a corresponding fully GPU-based, easy-to-control, and robust

method to generate and render plausible and detailed folds. This simulation is generated from an animated mesh.

A relaxation step ensures that the behavior remains globally consistent. The resulting wrinkle field controls the

lighting and distorts the texture in a way which closely simulates an actually deformed surface. No highly tessel-

lated mesh is required to compute the position of the folds or to render them. Furthermore, the solution provides

a 3D paint interface through which the user may bias the computation in such a way that folds already appear in

the rest pose.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation, I.3.7 [Com-

puter Graphics]: Color, shading, shadowing, and texture

1. Introduction

Most 3D character animation—be it for film production or

for interactive applications such as games or simulations—

demands a realistic depiction of the actors. Garments and

their interaction with an actor’s body contribute greatly to

the perceived level of realism. However, accurate physical

simulation of cloth still incurs high costs in computation

and design: The resulting stiff high-dimensional differential

equations together with the collision detection and handling

are difficult to treat robustly. The results are hard to guess in

advance for the user; intuitive parameters such as the density

of wrinkles per inch are not easily available.

This work describes a fully GPU-based real-time ap-

proach that addresses these problems, see Figure 1. The

method takes an animated coarse mesh as input, evalu-

ates the deformation of this surface due to the animation

(“Skin”), determines the local strength and direction of the

wrinkles (“Crush”), aligns them (“Relax”), and renders them

via shading of the mesh’s original triangles (“Render”), see

Figure 2. This approach is not based on physical dynamics,

but on the kinematical preservation of length through buck-

ling. The main contributions of this paper are:

• a robust and controllable method to determine a highly

detailed, globally consistent wrinkle field from arbitrary

geometric deformations of a mesh with no precomputed

or predesigned folds,

• a method to generate bump mapping and texture deforma-

tion on a coarse mesh from non-static height fields,

• a method to paint rest-pose wrinkles, which interact plau-

sibly with the wrinkles generated from an animation.

The input animation can be of any kind, interactive or pre-

recorded, if the resulting vertex positions and normals are ac-

cessible in a shader. The wavelength of the wrinkles as well

as their height profile (such as sinusoidal or accordion-like)

can be controlled interactively. A real-time prototype was

developed using Microsoft R© Managed DirectX R© 9.0c and

HLSL for Shader Model 3.0. However, the method is also

applicable to offline rendering, for instance to create wrin-

kles in 3D modeling software, to design morph targets, or to

provide a starting point for further editing.

This paper is structured as follows: Section 2 provides an

overview over related work. Section 3 describes the prepa-

ration of the mesh. Its deformation and the determination of

the strength and direction of the wrinkles is covered in Sec-

tion 4. The generation and global alignment of the wrinkle

field is described in Section 5. Section 6 addresses the ren-
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Figure 1: The described method adds plausible wrinkles to

an animated coarse mesh (original: upper left). The wave-

length of the wrinkles can be chosen freely (upper diagonal).

dering of the wrinkles. The method employed to create and

incorporate rest-pose wrinkles is presented in Section 7. Re-

sults are given in Section 8; Section 9 concludes the paper.

2. Related work

Cloth simulation and rendering has been an active field

for 20 years. An up-to-date survey is given by Magnenat-

Thalmann and Volino [MTV05]. Many cloth simulation

methods that aim at high realism employ differential equa-

tions inspired by physics. However, geometric methods have

always presented themselves as an alternative, due to their

speed and controllability.

Kunii and Gotoda [KG90] describe primitives for wrinkle

lines based on singularity theory. Ng and Grimsdale [NG95]

create fold lines by geometric rules and deform a mesh ac-

cordingly. Combaz and Neyret [CN02] describe a modeling

application, in which the user may paint the amount and di-

rection of surface expansion and set the desired wavelength

and the amount of regularity. The mesh grows and folds

according to the input. Larboulette and Cani [LC04] use a

curve on a surface, along which the mesh is contracted with

length preservation. In a similar vein, Wang et al. [WWY06]

fold the neighborhood of a curve using a physical simulation

and locally refining the mesh.

Kang et al. [KCCL01] animate a regularly structured

coarse mesh and place fine-scale vertices using cubic spline
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Figure 2: Four pairs of vertex and pixel shaders (rounded

rectangles) form the pipeline to generate and render the

wrinkles. In the intermediate steps, data is read from vertex

buffers and read from and written to off-screen pixel buffers.

curves. These splines oscillate to have constant length. Oshi-

ta and Makinouchi [OM01] deform PN triangles in such a

way that their curved edges retain their length. Kono and

Genda [KG03] control the bulging of muscle-like ribbons to

preserve length.

Hadap et al. [HBVMT99] determine a bump map for a

coarse mesh from a wrinkle pattern, which is prepared as

a texture by the user. The local amplitude is computed in-

teractively with a method inspired by the preservation of

area. Bando et al. [BKN02] create bump-mapped fine-scale

wrinkles by interpolating a user-specified direction field.

They also produce large-scale wrinkles from Bézier curves

drawn in texture space. The wrinkle strength is determined

from the contraction perpendicular to a given fold. Cutler

et al. [CGW∗05] allow the user to edit wrinkle curves for

reference poses. The wrinkle pattern for an arbitrary pose is

created by blending the prepared patterns according to the

similarity of the local geometry, that is: the lengths of and

angles between the vectors from a vertex to its neighbors.

Herman [Her01] computes folding patterns for hundreds

of reference poses using an offline simulation. For fast in-

teraction, he blends those patterns according to the simi-

larity of the current pose to the reference poses. Kang and

Cho [KC02] apply fast but dissipative physics to a coarse

mesh with little contraction resistance and then use the

result to control a fine mesh with high contraction resis-

c© The Eurographics Association and Blackwell Publishing 2006.
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tance, which leads to strong folds. Cordier and Magnenat-

Thalmann [CMT05] animate a coarse mesh and determine

the deformation of a fine mesh from the coarse one using

linear regression. This linear regression is trained with re-

sults obtained from offline cloth simulations. Decaudin et

al. [DJW∗06] employ a coarse control mesh to generate dia-

mond and twist buckling shapes on the cloth.

Wrinkles and folds controlled by the amount of mesh

deformation can also be found in commercial products:

NewTek LightWave 3D [New05] can compute a “Tension

Map.” The “SparseMorphTargets Sample” from the Di-

rectX 10 SDK [Mic05] employs geometry shaders to deter-

mine the triangles’ area change under animation.

Many authors aim at improving bump mapping to incor-

porate parallax effects. Kankeko et al. [KTI∗01] introduce

the simple, yet effective “parallax mapping.” Here, the sur-

face is treated as weakly curved, from which easily follows a

correction for the texture coordinates. Welsh [Wel04] adds a

limiting term to this method to counteract distortion for graz-

ing angles. He also treats curved surfaces, which, however,

still require a uniform texture mapping. At a much higher

computational cost, ray casting in the pixel shader offers bet-

ter image quality, see for instance Tatarchuk [Tat05]. This

idea is taken further by Policarpo et al. [POC05], who ex-

tend the ray casting process to render curved patches. Wang

et al. [WWT∗03] precompute ray-surface intersection data

parameterized by location, direction, and the curvature of the

base. The result is reduced to a set of textures via PCA.

3. Mesh preparation

The animated mesh as contained in a DirectX .x file is de-

scribed through a vertex list and an triangle list. Two of the

four computation steps have to retrieve the neighbors of a

given vertex. This operation, however, is not yet supported

by PC-based graphics hardware. Thus, the adjacency data

have to be collected upfront and stored in a buffer.

3D objects employed for character animation often are

mapped onto the surface with seams, see Figure 3. The typi-

cal method to create such seams is to use multiple copies of

vertices with the same positions but different texture coor-

dinates. For the simulation, such duplicated vertices have to

be merged again. This list of unified vertices and their adja-

cency data form the basis of the simulation, see Figure 2.

On initialization, the adjacency data for the unified ver-

tices are stored in a buffer of size 512× 512. (This buffer

is hugely oversized for one single object; however, the data

of dozens of objects can be stored in the same buffer.) In

standard writing order, the ID numbers of the neighbors of

vertex 1 are stored first, then those of vertex 2, and so on.

Whenever the space in a row is too tight to add the next ver-

tex’ neighbors completely to that row, the placement con-

tinues in the next row with no wrapping, see Figure 4. This

Figure 3: Whereas the texture should show a discontinuity

at seams (see the shoulders), the wrinkle field should not.

Thus, vertices duplicated to form seams (left) have to be

treated as one (right).

causes a tiny memory overhead but greatly simplifies the ac-

cess, which is time-critical. (This overhead could be elimi-

nated if the graphics cards allowed a one-dimensional buffer

that is thousands of pixels wide.)

Neighbors of Vertex 1 2 3

4 5

10

987

6

Figure 4: To allow easy access, the neighbor data are not

wrapped from one line to the next.

To work with the adjacency data, the (unique) vertices

carry an additional attribute consisting of three numbers:

their ID, their number of neighbors, and the starting address

of their data in the adjacency buffer.

4. Deformation

The deformation part of the computation consists of two

steps: First, the positions of the surface’s vertices are an-

imated (“Skin” in Figure 2), a process that results in new

positions and new vertex normals. Second, the deformation

around every vertex is determined by linear approximation.

Per vertex, this leads to a strength value and a vector that

describe the direction of strongest compression (“Crush”).

4.1. Skinning

The wrinkle generation can process any vertex-based ani-

mation, be it generated through bones, morphing (aka mesh

blending), or physical simulation. Due to the prevalence of

bone-based animations in current real-time applications, the

prototype, too, relies on a bone skeleton to which the mesh

is attached by soft skinning. Loading animations and setting

a matrix palette accordingly is mostly realized through stan-

dard DirectX functionality. The evaluation of the positions

and normals is handled in a vertex shader.

c© The Eurographics Association and Blackwell Publishing 2006.
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In the prototype, every vertex can be influenced by at most

four (k = 1, . . . ,4) bone transformations. The attributes of the

i-th vertex comprise the indices m(i,k) of these affine trans-

fomations (Mm,cm)—where Mm is a 3× 3 matrix and cm

is a translation vector—and the corresponding bone weights

α(i,k). The post-deformation position xi of the i-th vertex is

determined from the rest-space position xi via

x
′

i =
4

∑
k=1

α(i,k)(Mm(i,k)xi + cm(i,k)).

Employing a common approximation from game develop-

ment, we obtain the non-normalized post-deformation nor-

mal vector n′ from the original n by

n
′

i =
4

∑
k=1

α(i,k)Mm(i,k)ni.

Homogeneous coordinates unify both computations.

The input to these computations is the list of unique ver-

tices: If two vertices share the same position in space to

allow texture seams, they will be deformed equally, so we

need to only cover one vertex of every such group. For this

and the next two steps (“Skin,” “Crush,” and “Relax” in Fig-

ure 2), the rendering mode is set to create points instead of

triangles. All vertices are mapped to single pixels in two off-

screen floating-point buffers of size 256×256: one for posi-

tion data, one for normal data. Writing to both buffers at the

same time requires Multiple Render Target functionality.

4.2. Computation of the compression

On startup, the original positions of the vertices are stored

in a buffer similar to the buffer for the deformed vertices.

By looking at a vertex and its neighbors before and after

deformation, one can deduce a local linear approximation of

the deformation.

Let x0 be a the position and n the normal of a certain ver-

tex in the rest pose, and likewise xi the positions of its direct

neighbors i = 1, . . . ,N. Let x′0, n′, and x′i be the correspond-

ing quantities after deformation. Then we create orthonor-

mal frames in both the rest-pose and the post-deformation

tangent spaces through

t = normalize(x1−x0− ((x1−x0) ·n)n), b = n× t,

t
′ = normalize(x′1−x

′

0− ((x′1−x
′

0) ·n
′)n′), b

′ = n
′× t

′.

The difference vectors from the central vertex 0 to its neigh-

bors lead to tangent-space vectors

vi =

(

t · (xi−x0)
b · (xi−x0)

)

, v
′

i =

(

t′ · (x′i−x′0)
b′ · (x′i−x′0)

)

.

We seek a 2×2 matrix M that optimally approximates the

local deformation in the sense that it minimizes the sum of

quadratic errors

N

∑
i=1

|v′i−Mvi|
2. (1)

This leads to a multidimensional linear regression

M =

(

N

∑
i=1

v
′

i⊗vi

)(

N

∑
i=1

vi⊗vi

)−1

,

where ⊗ denotes the tensor product.

To find the strength r and a direction k of maximum com-

pression in pre-deformation space, we have to minimize

|Mv|2

|v|2
=

v ·MTMv

|v|2

for v ∈ R
2. Hence, r2 is the smaller of the two eigenvalues

of MTM, and k can be found as (t,b)v, where v is a corre-

sponding eigenvector ∈ R
2. We require |k| = 1 so that this

vector is determined up to its sign. This ambiguity will be

taken care of in later phases.

The strength of the compression is of less interest than

the amplitude of the wrinkles generated from it. Figure 5

shows the geometric relation between the compression and

the height for a accordion-type wrinkle. (Computing the pre-

cise arc length of sinusoidal wrinkles turned out to be an un-

necessary burden.) On expansion, the wrinkle amplitude h

should be zero, so that:

h =
W

4

√

max(1− r2,0), (2)

where W is the wrinkle’s wavelength, which we regard to be

a constant in pre-deformation space.

h

W/2rW

h

Figure 5: For a wrinkle with accordion profile, the relation

between compression and height can be computed easily.

All of these computations can be handled in a pixel

shader, which reads (among others) the buffers containing

the original positions, the deformed positions, and the de-

formed normals, and writes its result (direction, amplitude)

to another off-screen buffer (“Crush”), in which again one

pixel represents one vertex.

5. Wrinkle field

The “wrinkle field” is a height field that is computed as

though it would deform the polygonal mesh along the di-

rection of the local normal vector. The later rendering will

not actually execute such a displacement mapping but only

simulate its visual effects. The wrinkle field is not stored as

a regular texture, but computed on the fly from amplitude

and direction data stored per vertex. Near every vertex, the

wrinkle field is represented by a plane wave. To align the

waves of neighboring vertices, a relaxation process is em-

ployed that determines the wave’s phase at every vertex.

c© The Eurographics Association and Blackwell Publishing 2006.
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5.1. Computing the displacement

We assume that the wrinkle width W is constant in rest-

pose space. The geometric transformation of the vertices will

then automatically lead to an appropriate compression of the

wrinkles. The deformation computations lead to a wrinkle

amplitude h and a tangential normalized direction vector k

per vertex. In rest-pose space, we model the displacement

(that is: the local height value) at all points x near a vertex A

by the plane wave

h(x) = hA cos

(

2π

W
kA · (x−xA)+φA

)

, (3)

where hA is the amplitude, kA is the direction, φA is the

phase at the vertex A, and xA denotes its position, see Fig-

ure 6. (Here we employ a sinusoidal profile. Subsection 6.3

addresses how generalize this.)

Rest-Pose Space

x

xA

kA

x – xA

W

x’

x’A

k’A

x’ – x’A

Post-Deformation Space

Figure 6: The wrinkle width W is constant in rest-pose

space. The actual computations, however, are carried out in

post-deformation space.

To avoid conversions from rest-pose space to post-

deformation space, the actual computation is executed in the

latter. Thus, we have to convert k from rest-pose space to

a corresponding k′ in post-deformation space. The phase of

the wave in Equation 3 must not change, see Figure 6:

k
′

A · (x
′−x

′

A) = kA · (x−xA). (4)

We have already determined a 2×2 matrix M to approximate

the deformation in 2D tangent space around every vertex, see

Equation 1. A full 3D version of this linear transformation

can be found via the matrix L defined through

Lx = (t′,b′)M

(

t ·x
b ·x

)

.

Therefore, in the vicinity of vertex A the following holds:

x
′−x

′

A ≈ L(x−xA),

Thus, Equation 4 leads to the choice

k
′

A = (L−1)T
kA.

The corresponding field of per-vertex vectors k′ is com-

puted and stored by the “Crush” shader described in Sub-

section 4.2.

To form a continuous height field, the height is interpo-

lated linearly over every triangle ABC of the mesh:

h(x′) = αhA cos

(

2π

W
k
′

A · (x
′−x

′

A)+φA

)

+βhB cos

(

2π

W
k
′

B · (x
′−x

′

B)+φB

)

+γhC cos

(

2π

W
k
′

C · (x
′−x

′

C)+φC

)

, (5)

where α, β, and γ are the barycentric coordinates of x′.

5.2. Relaxation

Whereas the amplitude hA and the direction k′

A of the wrin-

kle field have already been determined for every vertex, the

phase φA is still unknown. One has to be careful in selecting

values for the phase because otherwise the surface appears

crumpled, see Figure 7.

Figure 7: The local plane waves do not match up if the

phase value per vertex is set arbitrarily (left). To form con-

sistent wrinkles, a relaxation process is employed (right).

The φ data are initialized with random numbers. At every

time step, the φ of every vertex is changed slightly toward a

value that reduces the misfit between the plane wave at the

vertex and those at its neighbors. Current graphics hardware

does not allow reading from and writing into the same buffer

within the same shader. Hence, two buffers for the φ data are

used alternatingly for reading and writing, see Figure 2.

We want to adjust the φ values in such a way that half-

way between a vertex 0 and its neighbor n the corresponding

plane waves coincide. This means

cos

(

2π

W
k
′

n · (p−x
′

n)+φn

)

≈ cos

(

2π

W
k
′

0 · (p−x
′

0)+φ0

)

for p = (x′n +x′0)/2. The signs of the vectors k′

0 and k′
n have

not been determined uniquely. Due to the symmetry of the

cosine, flipping one of these does not affect the resulting

height if also the sign of the corresponding φ is changed.

To directly compare the phases, however, we have to take

the signs into account, and this choice has to be consistent

c© The Eurographics Association and Blackwell Publishing 2006.



J. Loviscach / Wrinkling Coarse Meshes on the GPU

between adjacent vertices. One can look at the sign of the dot

product k′
n ·k

′

0 to determine whether k′
n should be flipped to

conform to k′

0. Hence, we introduce the phases at the vertex

0 and its neighbor n as:

ψ0 =
2π

W
k
′

0 · (p−x
′

0)+φ0,

ψn = sgn(k′

n ·k
′

0)

(

2π

W
k
′

n · (p−x
′

n)+φn

)

,

see Figure 8. To take the periodicity of the phase into ac-

count, we define the total phase error at vertex 0 with respect

to its neighbors 1, . . . , N as

E0 =
1

N

N

∑
n=1

min
i∈Z

(ψn−ψ0

2π
− i
)2

.

k’0

x’1

x’2 x’3

ψ0
ψ
n

x’
n

k’
n

p =

(x’0  + x’
n
)/2

x’0

Figure 8: The quadratic phase errors on the centers of all

connecting lines to the neighbors are averaged.

To achieve realistic results, it turned out to be sufficient to

apply a gradient descent via

φ0← φ0− ε
∂E0

∂φ0
, (6)

where ε is a small positive number. The descent is applied

per time step, ensuring temporal coherence with no sudden

leaps of wrinkles. One can choose a smaller ε to create a

smoother, floating look. If ε is set too high, the process be-

comes instable and yields oscillating motions. Thus, to al-

low a fast but stable relaxation the software prototype allows

to run several rounds of relaxation per frame—with corre-

spondingly lower ε. However, for all practical purposes a

single relaxation step proved to be sufficient. Furthermore,

no objectionable trapping into shallow local minima could

be noticed in the experiments.

If Equation 6 is applied as such, regions of wrinkles that

are separated by flat parts may influence each other: Even

though not visible to the user, the direction vectors in the flat

part will align themselves to those of the adjacent wrinkled

parts—and act back on the direction vectors there. Thus, we

elected to weigh every neighbor’s contribution to the error

E0 by max(min(4hn−0.2,1.0),0.0), which smoothly atten-

uates the effect of neighbors with amplitudes hn less than

0.3.

6. Final rendering

The vertex and pixel shader that are responsible for the final

rendering compute the lighting and deform the texture co-

ordinates to create the illusion of a surface that is wrinkled.

For deforming the texture coordinates, a simple approxima-

tion related to parallax mapping turns out to be sufficient.

The method used for lighting is more related to bump map-

ping than to normal mapping: It is directly based on height

data and does not rely—as most GPU-based methods do—

on an auxiliary texture containing the deformed normal vec-

tors. Such a normal map would have to be updated continu-

ously to conform to the height field

In the former steps, we have unified vertices that occupy

the same position in space but have different texture coordi-

nates to allow for texture seams. For the final rendering, the

original, possibly duplicated vertices have to be used. They

are equipped with an additional datum: the ID number of the

corresponding vertex in the smaller, unified set.

6.1. Lighting

The vital ingredient to the lighting computation is a per-pixel

normal, to be determined in post-deformation space. Assume

we are given a base plane P ⊂ R
3 with the (unit) normal

vector n′ and a height field h : P→ R. The height field h

shifts any point x′ of the plane to x′ + h(x′)n′. At such a

point, the resulting deformed surface has a (non-normalized)

normal of

n
′−

∂

∂x′
h(πP(x′)), (7)

where πP is the perpendicular projection onto the plane, see

Figure 9. This equation can be understood as a lean variant

of Blinn’s original bump mapping formula [Bli78], which

employed uv parameterization.

n'

Ground Plane

h(x')

x'

Normal of Height Field

Height Field

h(π
P
(x'))

∂

∂x'


Figure 9: The per-pixel normals can be computed with the

help of the gradient of the height field.

c© The Eurographics Association and Blackwell Publishing 2006.
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Returning to the curved model’s surface, we can approx-

imately identify the plane P with both the tangent plane

through a vertex and with a triangular face containing this

vertex. The k′ of Equation 4 will lie in the tangent plane, so

that we can immediately insert arbitrary x′ into h according

to Equation 5 and find h(x′) = h(πP(x′)). If we assume that

the k′ and the amplitude vary slowly on the surface we find:

∂

∂x′
h(πP(x′))

≈ −
2π

W
αk

′

AhA sin

(

2π

W
k
′

A · (x
′−x

′

A)+φA

)

−
2π

W
βk

′

BhB sin

(

2π

W
k
′

B · (x
′−x

′

B)+φB

)

−
2π

W
γk

′

ChC sin

(

2π

W
k
′

C · (x
′−x

′

C)+φC

)

. (8)

The arguments of the cosines such as k′

A · (x
′− x′A)+ φA

vary linearly in space, so they can be computed efficiently in

a vertex shader. However, the contributions of the three ver-

tices A, B, C of every triangle have to be treated separately.

This requires a clear assignment of variables to each of the

three vertices, which forbids that vertices are shared between

triangles. Thus, for the final rendering a list of separate tri-

angles has to be used (see Figure 2), not the indexed list of

vertices as which a mesh is typically given.

To evaluate Equation 7, only the normal n′ remains to be

specified. Since we are not dealing with a plane but with a

curved surface, the obvious choice is to use Phong interpo-

lation to determine n′ per pixel.

A faster approach to compute the gradient of h would

be to use the instructions ddx and ddy offered by HLSL.

They compute differences (that is: they approximate partial

derivatives) in screen space. With them, the gradient of h

could be derived from the values of h. However, the par-

tial derivatives in screen space would have to be transformed

to 3D. Furthermore, these instructions operate by looking at

2×2 pixels at a time. This leads to objectionable block-like

artifacts, see Figure 10.

Figure 10: HLSL’s partial-derivative instructions can sim-

plify the computation of normals, but lead to block-like arti-

facts (left: with partial derivatives, right: according to Equa-

tion 8, insets: fourfold magnification).

6.2. Texturing

A gross deformation of the texture already takes place be-

cause it is attached to the vertices. What is needed in ad-

dition are small-scale parallax effects around the wrinkles.

The method employed for this is an extension of parallax

mapping [KTI∗01] to curved surfaces with an arbitrary, non-

regular texture parameterization.

Consider a surface point x′ at which the height field has

the value h(x′), the (unit) normal is n′, and the vector v (not

necessarily normalized) points to the viewer, see Figure 11.

If one assumes that both the curvature of the base surface

and that of the height field are negligible, the viewing ray

intersects the deformed surface at a position shifted by

∆x
′ =
(

v

v ·n′
−n

′
)

h(x′). (9)

h(x')

x'

Height Field
∆x'

Base Polygon

n'v

Figure 11: The approximation for the texture parallax as-

sumes a slowly varying height field or near-normal viewing.

For oblique viewing, v ·n′ becomes small and the approx-

imation is no longer valid, see Figure 12. To cope with this,

we do not introduce a hard limit [Wel04] to the offset, but

use a smooth cut-off:

∆x
′ =

(v− (v ·n′)n′)v ·n′

(v ·n)2 +0.1|v|2
h(x′). (10)

Figure 12: The approximation by Equation 9 (left) can be

adapted according to Equation 10 to also handle the horizon

well (right).

The shift ∆x′ in x′ corresponds to a shift (∆u,∆v) in the

texture coordinates uv. Consider a triangle ABC of the mesh.

Define

b
′ = x

′

B−x
′

A, c
′ = x

′

C−x
′

A.
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Assuming that the uv are linearly interpolated over the plane

in which the triangle resides, we find

∆u =
(uB−uA)n′× c′ +(uC−uA)b′×n′

n′ · (c′×b′)
·∆x

′, (11)

and similarly for ∆v, where uA, uB, and uC denote the values

of the u coordinate at the vertices of the triangle. The frac-

tion that appears to the left of ∆x′ can be computed in the

vertex shader. It varies from triangle to triangle, which may

introduce jumps in the deformation of the texture.

6.3. Wrinkle profiles

The cosine in Equation 3 may be replaced by another func-

tion f that is 2π-periodic and obeys f (φ) = f (−φ) for all φ.

The latter symmetry is necessary because the sign of the di-

rection vectors k is not determined uniquely. If f was asym-

metric and if k pointed down at one vertex and up at a neigh-

bor, it would be impossible to align the wrinkles using the

phase offset φ alone.

To compute the deformation of the texture, f is needed

in Equation 5; to compute the lighting, its derivative d f /dφ

has to be known for Equation 8. We store both f and d f /dφ

as linearly interpolated value tables in textures. This ensures

full generality, see Figure 13, and avoids possibly expensive

computations of transcendental functions such as the cosine.

Figure 13: By filling a texture appropriately, wrinkles with

a sinusoidal profile (left) may for instance be replaced by

accordion pleats (middle), or pencil pleats (right).

All three vertices of a triangle contribute to a single pixel.

Whereas the three phase values (i. e., the arguments of the

cosine in Equations 5 and 8) can be determined per vertex

and interpolated linearly, both f and d f /dφ have to be eval-

uated per pixel for all of these three phase values. Thus, a

1D texture with two color channels is used as a look-up ta-

ble, which stores 32 values of f and d f /dφ. The automatic

wrapping of the texture coordinates on the GPU turns this

table into a periodic function.

7. Painting rest-pose wrinkles

Typical garments show wrinkles also in the rest pose of a

3D character. Hence, the software prototype allows to paint

wrinkles onto the surface or to generate them randomly.

These interact seamlessly with the dynamic wrinkles.

The user can rotate the 3D object and choose the direc-

tion of the wrinkles to be painted freely with respect to xy

screen space: left-right, up-down, and so on, see Figure 14.

As the user drags the mouse over the screen, this direction is

projected into the tangent space of the nearest vertex under

it. The vector is blended into an off-screen buffer whose tex-

els correspond to vertices of the mesh and are initially set to

the null vector. Thus, the content of this buffer describes the

amount and the direction of the intended rest-pose wrinkles

via the length and the direction (in rest-pose space) of one

tangent vector per vertex.

Figure 14: The wrinkle direction specified in screen space

during the painting of rest-pose wrinkles is projected into

tangent space.

The contents of this buffer are used to bias the compu-

tation of the dynamic wrinkle direction and amplitude data

according to Subsection 4.2. The idea is to modify the 2×2

matrix M that describes the local linear approximation of de-

formation according to Equation 1, that is

v
′

i ≈Mvi.

We can force wrinkles along some specified direction if

we shorten the rest-post space vector vi along the intended

wrinkle direction before applying M. A simple way for doing

so is to replace M by the product

M(E−q⊗q),

where E denotes the 2× 2 identity matrix, and q is the 2D

tangent-space version of the vector p∈R
3 read from the bias

texture filled by painting:

q =

(

t ·p
b ·p

)

The painting routine ensures that the vector p and hence also

the vector q always have a length smaller than one.
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8. Results

An animation with known ground truth serves as test of

the geometric computations: A flat square composed of

148 triangles is contracted to half its original width. Even

though the network of the triangles is strongly irregular, ide-

ally a pattern of parallel wrinkles should appear, see Fig-

ure 15. As the results show, the relaxation process helps

greatly. The global minimum—that is: parallel folds with no

bifurcations—is not attained completely, however. But ac-

tually this makes the result more plausible. Since the relax-

ation changes the wave phase at the vertices only gradually,

the height maxima and minima tend to stay bound to the

deforming geometry, which adds to the plausible behavior.

With accordion-type wrinkles one observes the zigzag pro-

file that should emerge from a compression by 50 percent.

Figure 15: An irregularly tessellated surface is subjected to

compression (upper left: 98 %, upper right: 75 %, lower

row: 50 %). Without relaxation (lower left), strong irregu-

lar wrinkles appear. The accordion pleating (lower right)

displays the right amount of folding.

The extraction of the deformation data and the lighting

work well even for large wrinkles. However, the simpli-

fied parallax computation of Equation 10 and the linear per-

triangle approximation according to Equation 11 become ob-

vious for large wrinkles, see Figure 16. This is exacerbated

by the growth of the wrinkles’ amplitude with the wave-

length, see Equation 2. The lack of occlusion effects and

deformation of the silhouette is of much less importance.

Figure 16: The computation of the wrinkle field and the

lighting is uncritical even for very large folds. However, they

lead to visible artifacts in the texture deformation.

Speed benchmarks were done on an Intel R© Pentium R© 4

running at 2.5 GHz with an Nvidia R© GeForce R© 6800 GT

graphics card displaying 1280×1024 pixels full screen with

no vertical synchronization and no back face culling. Table 1

shows the timing results for three typical models, which are

also depicted in the figures of this paper.

Name # Vertices # Pixels (average) fps

Shirt 455 ≈ 330.000 328

Zeppelin 508 ≈ 260.000 540

Curtain 92 ≈ 505.000 537

Table 1: The artificial details produced by wrinkling allow

using coarse models to achieve highly interactive speeds.

The contribution of the different shaders to the compu-

tational load is shown in Table 2. To explore the possible

range, model “A” is coarse but large on screen (100 vertices,

approx. 940.000 pixels); model “B” is highly detailed with a

small size on screen (5977 vertices, approx. 55.000 pixels).

The contribution of each of the four steps is deduced from

the change in the frame rate when one of the steps is skipped.

Clearly, the final rendering is the most time-intensive step,

partially due to the high number of texture reads.

Stage # Shader instructions Contribution

Vertex Pixel A B

Skin 13M +20 2 0.06 ms 0.25 ms

Crush 8 28N +102 0.08 ms 1.83 ms

Relax 7 33N +23 0.11 ms 1.75 ms

Render 67 47 3.11 ms 5.01 ms

Total time incl. non-shader part 3.45 ms 8.90 ms

Table 2: The relative workload of the shaders depends on the

choice of the model (for “A” and “B” see text). The maxi-

mum number of bone influences per vertex is M; the number

of neighbors of a vertex is N.

9. Conclusion and outlook

We have presented a shader-based solution to create folds

and wrinkles in real time. The wavelength, the profile, and

rest-pose wrinkles can be controlled easily. As the bench-

marks demonstrate, the method can be employed in speed-

sensitive applications such as games. The speed can be in-

creased further by executing not all of the four steps for

every frame. In many situations it may suffice to run the

“Crush” and the “Relax” steps only every second frame or

even more rarely.

To further improve the plausibility of the results, one can

control the wavelength of the wrinkles through another tex-

ture. Whereas the folds look plausible for cloth or for plastic

foil, skin simulations would profit from stronger irregulari-

ties. These can be achieved by skipping the relaxation or by

creating disturbances through a user-defined texture.
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Future work can combine the described technique for

wrinkles with a physical simulation or a morph animation for

the coarse mesh. On top of that, improved methods for paral-

lax effects according to Section 2 may address occlusion and

self shadowing, at corresponding costs in terms of rendering

speed. Three of the four processing steps will profit greatly

from the geometry shader units in next-generation graphics

hardware [Mic05], which allow direct access to both a ver-

tex’ neighbors and all vertices of a triangle.
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