GPU-based Audio via the VGA Port

Jorn Loviscach*
Hochschule Bremen (University of Applied Sciences)

1 Introduction

Graphics processors catch increasing attention from the audio com-
munity [Trebien and Oliveira 2008]. The playback, synthesis, and
processing of sound—in particular of a huge number of audio tracks
playing simultaneously—is a task well suited for massive paral-
lelization. However, handling audio on the GPU requires reading
the resulting data from the graphics card and transporting them to
the audio adapter. This causes state changes in the GPU and forces
the CPU to wait for the completion of the read operation.

This work demonstrates that the detour via the audio adapter can
be avoided. To this end, analog audio is sent through the graphics
card’s VGA port in an encoded form. An inexpensive electronic cir-
cuit built from standard operational amplifiers and CMOS logic ICs
handles the decoding and outputs an analog stereo line signal. The
graphics card is operated at the standard resolution of 800 x 600 pix-
els with typical settings for the horizontal blanks. The settings for
the refresh frequency and for the vertical blank are special, how-
ever, as is detailed below. The triple buffer of the graphics card
takes over the role of the ring buffer commonly used to ensure a
continuous stream of data to the audio card. In contrast to the latter,
the triple buffering is handled fully transparent to the programmer.

2 Implementation

The first major technical obstacle lies in the graphics card’s DAC
resolution of 8 bits per channel, which is poor when compared to
the 16 bits of CD quality. This problem can be overcome through
dithering: Every line of the VGA image is interpreted as one single
audio sample. Within this line, the eight-bit value fluctuates slightly
to yield an effectively higher resolution in the average. The second
major technical obstacle is that today’s typical graphics cards re-
quire a vertical blank interval of several lines to function reliably.
Otherwise—as experiments with cards from different manufactures
proved—the operating system may hang or the first lines of the im-
age may randomly show the previous frame’s content.

The inevitability of the vertical blank implies that not every line
of the output can correspond to an audio sample. The audio de-
coder has to implement a buffer that is filled in advance and then
can supply audio samples during the vertical blank. To keep this
buffer short and the decoder electronics simple, one can introduce
a regular pattern of lines with and without sample data as follows:
The vertical blank (sync interval plus porches) is set to 40 lines,
meaning that one frame comprises 640 lines. 128 audio samples
are distributed onto these 640 lines as illustrated in Figure 1. To
achieve a sampling rate of approximately 44,100 samples per sec-
ond, the refresh rate is set to 344 frames per second.

The graphics card sends the audio samples in packets of 16. The
decoder spread each of these packets evenly over 80 lines of the im-
age, employing an analog storage based on 16-line (de-)multiplexer
circuits. The red and the blue channel of the VGA connector are
used for the left and right audio channels, respectively. The green
channel carries a signal that controls the timing of the analog buffer
and is used as a reference to compensate noise. For details see the
electronic attachment to this page.

*e-mail: joern.loviscach@hs-bremen.de

Line 1 X
16 Audio Samples 1 to 16
Zero Output
81 '
96 Audio Samples 17 to 32
Zero Output
561 '
576 Audio Samples 112 to 128

601 Zero Output
Vertical Blank
640

Figure 1: A frame of 800x 600 pixels contains 128 audio samples.

To create the appropriate signal on the graphics card, the software
renders a frame-filling rectangle with a custom pixel shader. This
shader reads the audio data from a two-channel texture with 16 bit
resolution per channel. The high-frequency noise pattern for the
dithering is supplied through another texture. Electrical differences
between the 16 storage places of the analog buffer and cross-talk
from the digital control lines inevitably lead to tonal noise at one
16th of the sampling frequency, slightly less than 3 kHz. This noise
can be suppressed by adding a canceling waveform to the input
signal. This waveform is composed of sinusoidal waves at this
frequency and integer multiples of it. Setting the amplitudes and
phases of these waves is interactive and has to happen only once.

3 Results and Outlook

Experiments were done on the VGA port of an Nvidia GeForce
6800GT with a standard display connected to the primary DVI out-
put for operation. The frequency response of the system extends
from 20 Hz to 20 kHz within £3 dB. The added noise-canceling
waveform widens the dynamic range from 49 dB to 66 dB. The la-
tency time measured as reaction time to an impulse sent via a hand-
shake pin of the serial port is 10 ms, as expected for triple-buffer op-
eration at 344 fps. Nvidia’s performance counter pixel_shader_busy
is at 35 %, which is mostly due to the low number of pixel proces-
sors; all other GPU load indicators are below 5 %.

Future work will address using a DVI port as a means to output
audio. This digital output allows the decoder to assemble the bits
of the three color channels into one 24-bit word per pixel, hence
achieving studio-grade resolution without sacrificing one complete
line of the image for every audio sample. The DVI-based solution
requires significantly more complex decoding logic, but may easily
offer 1000 audio outputs in parallel, a number that is useful for wave
field synthesis. Such applications that generate massive amounts of
data on the graphics card are particularly promising, as the direct
output means than only small volumes of data have to be transferred
between the CPU and the GPU—in either direction.

References

TREBIEN, F., AND OLIVEIRA, M. M. 2008. Real-time audio
processing on the GPU. In ShaderX 6: Advanced Rendering
Techniques, W. Engel, Ed. Charles River Media, 583-604.



