
Sketch-Based Annotations in Google Earth

Christian Schulze Laurens Nienhaus
Hochschule Bremen (University of Applied Sciences)

Jörn Loviscach∗

Fachhochschule Bielefeld (University of Applied Sciences)

1 Introduction

Painting in a 3D geobrowser is interesting both for artistic uses such
as virtual graffiti and for commercial applications such as architec-
tural sketches. It seems straightforward to turn Google Earth into a
3D painting tool: Store the 3D mouse data that the software returns
and construct polylines from them. However, this approach has two
vexing drawbacks: First, when the user paints past an edge, the end
of the stroke will be placed at an incorrect depth, see Figure 1; sec-
ond, it is not possible to sketch in mid-air, for instance to indicate a
planned height extension of a building.

These issues could be solved easily if 3D meshes were available.
However, these data remain mostly inaccessible, partly due to copy-
right issues. We present a prototype of a collaborative Web-based
solution that constructs simplified painting surfaces from 3D mouse
points collected through Google Earth. (Note that the stand-alone
version of the Google Earth browser offers tools to draw paths and
polygons onto the scene, but is limited to ground-level drawings.)

Figure 1: Even though 3D mouse data are available from Google
Earth, the results can be surprising when one paints past edges
(left: view during painting, right: rotated).

Before starting the actual painting, the user is asked to brush with
the mouse across the interesting region of the building. We apply
RANSAC to find up to three planes in the 3D data thus collected.
This allows dealing, for instance, with typical corner points. After-
ward, the user can select from three painting modes:

• Strokes can only be applied to the convex surface formed by
the planes.

• Strokes can only be applied to the surface formed by a sin-
gle, selected plane, within the limits given by the intersections
with the other planes.

• Strokes are applied to a single, selected plane, but now are
allowed on its entire area to support painting in mid-air.

The user may adjust the color, the opacity and the size of the brush.
This is implemented by creating appropriate 3D polylines inside
Google Earth. For fine adjustment, the detected planes can be
nudged in the direction or against the direction of their normal. This
is helpful to correct planes that are offset due to our RANSAC-
based algorithm getting stuck in recesses or to prevent z-fighting
artifacts between the 3D paint strokes and the buildings.

∗e-mail: joern.loviscach@fh-bielefeld.de

Figure 2: The user interface combines the 3D view (Google Earth
plug-in) with drawing tools and view controls (HTML, JavaScript).

2 Implementation

The front end of our system consists of a Web page containing the
Google Earth plug-in accompanied by controls based on HTML,
see Figure 2. The back end is formed by the Google Earth servers
and by our own application server running Ruby on Rails to pro-
vide the users’ annotations. Already existing annotations, in partic-
ular those of other users, are inserted from our server into Google
Earth’s 3D scenes by providing KML files.

A client—be it the standalone version or the Web-browser plug-in
of Google Earth—once receives a main KML file containing all cur-
rent annotations from our server. This KML file periodically sends
requests for updates to the server using a KML NetworkLink. An-
other KML file containing instructions on which drawings to add,
update or delete is then served to and processed by the Google Earth
client. The KML NetworkLinkControl technique for modifying el-
ements in a KML document is employed here.

Each request for updates contains the timestamp of the last suc-
cessful update in order to only send annotations that are new or that
have been changed in the meantime. Other users can access work in
progress as soon as a user has sent his or her changes to the server.
The access is possible with only a short delay due to the periodical
requests for updates described before.

3 Conclusion and Outlook

We presented a system that leverages existing 3D content despite
its restricted availability. Graffiti-like objects can be built with and
integrated into standard Web technology.

For architects and engineers distributed over a construction site, one
can imagine a Web-based solution where everybody carries a mo-
bile computer, uses this to paint markings and look at other persons’
inputs, and communicates with the others through a chat interface
realized with Google Earth’s placemark balloons.

On the side of entertainment, one can imagine a voting system for
graffiti or a game that is based on different roles such as sprayer,
janitor, and police. The set of drawing tools could be extended. En-
tertainment applications may include effects such as color dripping
and the automatic weathering of graffiti with time.


