Automated Interior Design from A to Z

Robert Brauer

Arne von Ohsen

Jorn Loviscach™

Hochschule Bremen (University of Applied Sciences)

1 Introduction

Architectural walkthroughs, virtual worlds and video games require
furnished building models, which are tedious to produce. Whereas
previous work [Xu et al. 2002] [Akazawa et al. 2005] has addressed
parts of this problem, we aim at a complete solution whose input is
a raw building model with no semantics and a repository of 3D
models of furniture items with appropriate metadata, see Figure 1.
Another novelty is that user-customizable scripts guide the selec-
tion and placement of the furniture, which allows more intelligence
to be built into the objects.

Model in Cinema 4D Finding Rooms

Floorplan Room Centers

Furnished Model in Cinema 4D

Room Outlines Room Corners

Interior Designer 4 Export * Import

e — o

Tag Rooms

Select and modify
placement scripts

Start / Restart and monitor
the placement process

Export model positions
to Cinema 4D

Figure 1: A plug-in and an external program work in cooperation.

2 Implementation

Starting from a building model inside Maxon Cinema 4D, a plug-in
determines plausible locations for floors. To this end, it bins the
z positions of upward-facing polygons and forms a histogram of
their areas. Substantial peaks of this histogram are interpreted as
floor levels. The plug-in iterates over all floors it found and gen-
erates bitmaps with floor plans. This is accomplished through a
boolean operation in which the building is intersected with a rect-
angular block that encompasses all lower floors and the current floor
level plus some headroom. Thanks to Cinema 4D’s built-in boolean
operations, cut faces can be rendered in white, the others black.

With the help of a region-growing algorithm we find rooms in these
bitmaps and assign walls to them: The walls are thickened until they
meet and only isolated pixels remain between them. These are used
as seeds of rooms in a reverse growth process that proceeds from the
inside to the outside. Walls stop the growth; specific rules govern if
two (proto-)rooms that meet during growth are to be joined.

*e-mail: { {rbrauer|aoehsen } @stud.|joern.loviscach @ }ths-bremen.de

After this pre-processing, the plug-in starts an external program that
extracts simplified polygonal outlines from the floor plan images
and creates a discrete set of positions at which to place objects. The
first main purpose of this external software is to allow the user to
define room types and styles: Which room is the living room? etc.
The second main purpose of the external software is the automatic
placement of furniture from a database of 3D models, each accom-
panied by an XML file giving the piece’s name, its bounding box,
placement parameters, etc. The automatic placement is based on
scripts that may be used off the shelf or may be edited during run-
time using the language C#.

The placement process uses four types of scripts: The Select Script
chooses an appropriate subset of the furniture models, for instance
only small furniture for a narrow room. Room Type Scripts shrink
this set further according to whether, for instance, a living room or
an office space is to be equipped with furniture. The remaining list
is sorted by “hierarchy level,” so that e. g. tables are placed before
chairs are. An Item Script is invoked for every object of the sorted
selection. It walks through all discretized object positions within
the room, assigns a proper orientation (a TV set faces away from
a close wall) and assesses every spatially feasible placement with a
quality value that describes how well the object fits to its neighbor-
hood, for instance if a chair is near a table and if there is enough
space behind the chair. A Filter Script is run after all Item Scripts.
It evaluates the overall quality, such as Feng shui rules. If this script
finds that objects are placed badly, these are forced to relocate. This
step loops back to the placement of single objects through their Item
Scripts. The loop terminates when a quality threshold is met or a
fixed number of rounds is surpassed.

When the external program is done with placing, it exports a list,
which is automatically read by the plug-in still running in Cin-
ema4D. It loads and places all furniture objects within the building.

3 Results and Outlook

On a standard PC and with a 3D building model that comprises five
rooms per floor, our as yet unoptimized solution takes less than two
minutes per floor to generate floor plan bitmaps, convert them to
polygons, find rooms, and distribute points to place furniture on.
The time needed for the automated placement depends strongly on
the number of placement points, the size of the object repository,
and the rigidity of the placement rules. This process can return
a plausible solution within seconds; picky settings, however, may
incur hours of computation.

A future version will include the depth buffer in the rendered floor
plans: The local height of the ceiling is vital to furnish attics. In
addition, we expect that a tool of this kind will also be welcomed
as an addition for game level editing software.

References

AKAZAWA, Y., OKADA, Y., AND NINUIMA, K. 2005. Automatic
3D scene generation based on contact constraints. In Proc. 3IA
'05, 593-598.

XU, K., STEWART, J., AND FIUME, E. 2002. Constraint-based
automatic placement for scene composition. In Proc. Graphics
Interface 02, 25-34.

