
Audio Engineering Society

Convention Paper
Presented at the 124th Convention

2008 May 17–20 Amsterdam, The Netherlands

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have
been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from
the author’s advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes
no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio

Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

An Anatomy of Graph-Based User Interfaces
for Media Processing

Christopher Schultz1, Jörn Loviscach2, Shailendra Mathur3, Jay LeBoeuf4

1Work done while at Universität Bremen, 28356 Bremen, Germany; now at mediaclipping, 28217 Bremen, Germany

2Hochschule Bremen (University of Applied Sciences), 28199 Bremen, Germany

3Softimage Corp., Avid Technology, Inc., Montreal, Quebec H2X 2V2, Canada

4Work done while at Digidesign, Daly City, CA 94014, USA; now at Imagine Research, Inc., San Francisco, CA
94127, USA

Correspondence should be addressed to Christopher Schultz (cschultz@tzi.de)

ABSTRACT
Graph-based user interfaces are employed in a variety of software such as audio synthesizers, video com-
positing tools, and database application builders. All of these uses afford the graphical metaphor of a graph:
“Nodes” such as sound generators or filters are tied together by “links,” which may represent signal flow or
conceptual relations. Focusing on media production tools, we have examined a large range of current soft-
ware products to find out which de-facto standards have evolved in the field of graph-based interfaces and
which features can be considered unique. We categorize a multitude of interface concepts employed in actual
graph-based interfaces and describe differences in their implementation. The findings provide guidelines for
developers of media production software.

1. INTRODUCTION
In a variety of domains, graphs are used as
metaphors to describe structures or relations. Ex-
amples include subway maps, molecular structures,
flowcharts of production processes, and organiza-
tional charts of management hierarchies. In multi-

media production software, graph-based user inter-
faces are commonly used to represent and control the
processing of audio or video data. In most of these
cases, graphs can be considered a UI metaphor [1].
Only in diagramming tools, graph-based interfaces
are used to create graphs as such; elsewhere, graphs



Schultz et al. Graph-Based User Interfaces

Fig. 1: In Softimage XSI, the ports on a shader’s
nodes are color-coded according to which data type
they handle.

are analogies representing something different, such
as a flow of data. This is similar to the desktop
trash can, which is not an actual trash can, but yet
another UI metaphor.

Mathematically speaking, a graph [2] is a struc-
ture that models relationships within a set of en-
tities called “nodes” by connecting these nodes via
“edges.” In a diagram, the nodes are usually rep-
resented as boxes or icons; the edges are drawn as
straight or curved connection lines. In a directed
graph, the relationship between the nodes is not
symmetric, but of a send/receive-type. This is visu-
alized by drawing each edge as a line with an arrow.
Directed acyclic graphs form an important subtype:
Walking in the arrows’ direction, one can never visit
the same node twice.

Note that most of the applications do not conform
strictly to the common mathematical definition of a
graph, since they distinguish between different types
of sockets per node to which edges can connect. For
instance, in 3D software, one socket of a node may
control the overall color of a material; another socket
of the same node may control the size of the high-
lights (see Figure 1). This issue is solved by dis-
tinguishing between the nodes the sockets they con-
tain (called “vertices” or “ports”). Which connec-
tions are allowed may be described with the help of
a graph grammar [3].

To study graph-based interfaces, we borrowed an ap-
proach from other scientific disciplines such as zool-
ogy, which seeks to identify, categorize, and chart

existing species. Rather than build and evaluate
an application from scratch, we attempted to learn
about the interfaces with which users are already fa-
miliar: Which functionality has evolved as a de-facto
standard? What are the variations to be seen? Since
conforming to what the user expects is a vital issue
in interface design, the answers to such questions
contain important information needed to create new
or to improve existing software.

When creating applications that merely consist of
menus, text windows and dialog boxes, developers
are relieved from considerations of this kind: Such is-
sues are exhaustively handled through standardized
frameworks for graphical user interfaces such as Sun
Java Swing. There is not yet an established toolkit,
however, for graph-based user interfaces. Thus, the
developer is left alone with the task of identifying in-
teraction modes and implementing their details. As
our analysis reveals, in this process it is easy to over-
look seemingly obvious features such as panning.

2. TYPOLOGY
Researchers have proposed graph-based interfaces
for an extreme variety of applications. In his sem-
inal work of 1988, Haeberli [4] introduced Con-
Man, a graph-based UI that allows combining func-
tion modules to form interactive graphics software.
Digidesign TurboSynth, dating from the same year,
employed graphs for audio synthesis. Softimage Ed-
die, published one year later, was the first commer-
cial software to apply graphs to effects and composit-
ing processing for digital film and video production.
Such software paved the path for most of today’s
graph-based UIs. The manufacturers have polished
these interfaces continuously, so there is much to
learn from the existing products.

We were able to classify each application of graph-
based interfaces found in the marketplace into one of
three basic types, contrary to the richness of applica-
tions found in scientific literature. This may indicate
a pressure toward standardization. The three types
we found are the following:

• Graph exploration. This software employs
user interfaces to visualize and explore graphs.
Possible fields of application are the analysis of
relations of database structures, Internet con-
tent, or biological molecular structures. These

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 2 of 6



Schultz et al. Graph-Based User Interfaces

tools automatically layout graphs in 2D or 3D
space and allow the user to explore the graph
interactively by panning, zooming, and possi-
bly also rotating. However, they do not offer
functions to edit the graph itself.

• Graph modeling. These applications offer
special interfaces to let the user create and edit
graphs visually. Software of this type is of-
ten applied to document or present abstract re-
lations or processes as drawings such as flow
charts, mind manager trees, UML class and ac-
tivity diagrams, or organizational charts. In
contrast to user interfaces of the graph explo-
ration type, graph modeling tools offer inter-
face features for interactive editing; they sup-
port manual changes in the design style of nodes
and edges.

• Process control. This software employs a
graph-based user interface to control an under-
lying process such as the flow of audio and con-
trol signals within a modular software synthe-
sizer. Commonly, the UI enables the user to
perform operations that manipulate the graph
directly, like placing a new node on the canvas,
moving or deleting it, connecting to or discon-
necting it from other nodes. All changes have
a direct influence on the underlying process, so
that the user interface can be understood as a
front-end control for a process running in the
background. Hence, this kind of user interface
can be considered a visual programming lan-
guage [5]. This type of application is found most
often in media production software; hence, we
focus on it in this paper.

3. INTERFACE FEATURES
To study the features of graph-based interfaces for
process control in detail, we collected a broad cross-
section of popular software. The list of 14 analyzed
applications includes software for audio synthesis
and processing such as Cyclin ’74 Max/MSP and
Propellerheads Reason 5 as well as video composit-
ing, 3D animation, and mathematical simulation.

The study covered 27 criteria which were structured
into five groups: node features, connection features,
view options, graphical aspects, and layout options.

In every category we also looked for special, uncom-
mon features.

3.1. Node Features
Nearly all analyzed UIs (13 of 14) distinguish visu-
ally between different types of nodes. Half of the
UIs (7 of 14) indicate the node type through a cor-
responding background color of the node. Diverse
node shapes can be seen in four applications. In an-
other four, node parameters are directly accessible
inside the graphical node object.

A significant majority of UIs (10 of 14) enable the
user to edit the name of a node element directly
within the graph view. Two major techniques are
used: The user can click with the left mouse button
on the node’s name label or the UI requires a click
with the right mouse button on the node object to
open a context menu. In both cases, the node’s name
label turns into a text input box.

All analyzed UIs highlight selected nodes through a
change in color or through a colored frame when they
are selected by a single mouse click or by drawing a
selection using the mouse. Many UIs (9 of 14) reveal
a node’s properties such as filter parameter settings
when the node is double-clicked.

Many UIs offer one of three major methods to place
a new node object on the screen. Numerous UIs even
support several of these:

• Clicking with the right mouse button on an
empty place of the canvas opens a context menu
from which the user can select the command to
create a new node. (8 of 14)

• The toolbar offers a specific icon to click on. (7
of 14)

• The standard menu offers a specific entry. (9 of
14)

A significant majority (12 of 14) of the tested UIs
allow the user to copy and paste node objects using
shortcut keys.

A majority of UIs (9 of 14) do not allow nodes to
be scaled in size. Five UIs allow scaling by drag-
ging a corner handle of a node. In all of them, only
the shape of the node is scaled, whereas the node’s
content (e.g. labels or icons) retains its size.

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 3 of 6



Schultz et al. Graph-Based User Interfaces

Eight of the 14 tested UIs offer to group node ele-
ments into a nested node object, which may reduce
visual clutter. This may be invoked via a shortcut
key (7), a context menu (6), or a menu command (3).
In a remarkable coincidence, all five examined video
compositing tool UIs include the grouping feature,
accessible via a shortcut key and a context menu.

Several UIs (4 of 8) offer a special type of node nest-
ing: The user may encapsulate nodes into a module
that can even be stored and reused. Thus, users can
create their own meta-nodes.

3.2. Connection Features
The node elements of nearly all tested UIs (12 of
14) include sockets as small graphical marks acting
as input or output interfaces for connection lines.
Half of those 12 UIs highlight a socket when the
mouse hovers over it. When the mouse hovers above
a connection line, the line is highlighted by 6 of the
14 tested UIs.

The most common way to connect two nodes is to
click on the source node or exactly on its output
socket, hold the mouse button, drag a line to an ap-
propriate socket of the destination node, and release
the mouse on it. Twelve applications feature sockets
that can create connections this way. However, when
nodes offer several input and output channels (2 of
14), the user additionally has to select the wanted
channel during this process. On top of that, several
UIs offer special connection features:

• “Auto connect”: If the user drags a node object
close to another node, some UIs (2 of 14) au-
tomatically suggest a connection between their
sockets (e.g., by drawing a transparent line).
This connection is established when the mouse
button is released.

• “Auto insert”: If the user drags a free node
over an existing connection line and releases the
mouse, some UIs (5 of 14) will automatically in-
sert this node into the process chain. For this
to happen, some UIs require pressing a certain
key while releasing the mouse.

We found three major ways to disconnect nodes.
Most commonly (7 of 14), the user clicks on a socket
or line arrow to lift the line and then drags it to an

empty area of the canvas; the line is removed when
the user releases the mouse. Alternatively (5 of 14),
the user selects a line by clicking on it, and hits the
Delete or the Backspace key. On a click with the
right mouse button, some UIs (4 of 14) present a
context menu with—among others—a delete com-
mand. Furthermore, several UIs (4 of 14) allow the
user to extract nodes from the graph through key
shortcuts.

As a special feature, 2 of 14 UIs offer a mouse gesture
called “shaking”: When a user drags a node quickly
to the left and to the right, it is released from the
process chain. We found no other usage of mouse
gestures in the range of software examined.

Most UIs (12 of 14) detect when a new connection
would lead to a loop within the process graph; they
refuse to create such a connection that would cause
the graph to cease being acyclic.

3.3. View Options
A large graph may require the user to pan over it,
which is supported by nearly all UIs (13 of 14). We
identified several techniques for performing a pan
action: clicking and dragging with the mouse while
pressing a certain key (8), using the scrollbars (7),
or pressing the middle mouse button and dragging
the mouse (4).

A significant majority of the tested UIs offer a zoom
feature (11 of 14), similar to other zoomable user in-
terfaces, which are of particular importance to map-
ping applications [7]. The user can zoom in and out
on the displayed graph, which is especially helpful
for large graphs. However, there seems to be no
common UI concept for zooming in or out:

• Several UIs (5) offer shortcuts, mostly based on
the Plus and Minus keys.

• A couple of UIs (5) require the user to press
a special key and additionally click with the
mouse. Thus, the user can indicate the center
of the zoom operation.

• Some UIs (5) employ the mouse wheel for zoom-
ing.

• A few UIs (2) include a zoom command in the
menu or toolbar.

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 4 of 6



Schultz et al. Graph-Based User Interfaces

In order to offer the user an overview of a large can-
vas, half of the UIs (7 of 14) include a bird’s eye view
along with the standard display, as known from im-
age editing tools and video games.

Some applications (6 of 14) enable the user to choose
the amount of information displayed in node objects.
This feature allows users to reduce the visual com-
plexity of a graph-based UI in certain situations and
to show all node details in other situations. There
are mostly two or three levels of detail available. In
most of these cases (5 of 6), the user can toggle the
interface between showing all node sockets and show-
ing only the used sockets. Fewer UIs (2 of 6) allow
the user to enable or disable node icons or thumb-
nails.

The majority of the analyzed UIs (9 of 14) provide
a visual grid on the canvas which can help users to
layout the nodes by hand. Nearly all UIs featuring
a grid (8 of 9) possess a mode to automatically snap
node elements to the grid.

As a special feature, some UIs (2 of 14) allow users
to define customized perspectives, each of which de-
scribes a visible section of the canvas and the graph
objects. Via key shortcuts, users can quickly move
to stored views.

3.4. Graphical Aspects
The basic node shape used by most UIs (10 of 14)
is a box, oftentimes with smoothly rounded edges (4
of 10). However, many UIs employ different shapes
for different node types, so that also circles (4 of 14)
or capsules (3 of 14) are available as well.

The majority of UIs draw connections between nodes
as straight lines (10 of 14). Other line types are
Bézier curves (5 of 14), as well as straight lines run-
ning in horizontal or vertical direction (3 of 14). Sev-
eral UIs allow the user to set the preferred line type.

There is a clear standard concerning the canvas’
color: 10 of 14 tested UIs use a gray background.
All UIs (9 of 14) that offer a grid—to be used as a
placement aid—draw this grid in a gray tone. For
the connection lines, however, there is no de-facto
color convention: some UI draw them black (6 of
14), others white (4 of 14). Furthermore, several
UIs have multiple line colors which indicate the data
type flowing through this line (4 of 14).

Fig. 2: Automatic graph layout may (bottom) be
employed to clean up the workspace such as here in
Softimage XSI.

One of the tested UIs offers an option in order to tog-
gle between two graphical display types. In an “en-
hanced view” mode, further information about node
objects or connection elements is indicated graphi-
cally; for instance different line styles may represent
the data type of a connection.

3.5. Layout Features
Most graph-based UIs enforce a certain flow direc-
tion, due to the location of the sockets on the node
objects. If the input sockets are placed at the top
of the node and the output sockets at its bottom, a
less-cluttered graph will require the general flow to
be from top to bottom. Such a top-down flow only is
favored in 5 of the 14 tested UIs. The majority (11
of 14) shows a left-to-right flow direction by default.
Some UIs even allow the user to set the preferred
flow direction in the options (3 of 14).

Much research has addressed the automatic layout of
graphs [6], the objective being a clear arrangement of
the nodes with only a minimum number of crossings
of their edges, see Figure 2. Less than half of the UIs
(6 of 14) provide this feature—notably only video
compositing and shader design tools.

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 5 of 6



Schultz et al. Graph-Based User Interfaces

Two of these applications additionally offer a com-
pact layout that arranges the graph with smaller
gaps between the node objects, allowing larger
graphs to fit onto the screen. One of the examined
UIs aids in visual grouping: A key shortcut attracts
selected nodes to the rest of the graph or repels them
from it.

4. CONCLUSION
Many media-driven applications employ graph-
based user interfaces in order to represent and con-
trol the processing of audio or video data. Based on
a testing pool of different graph-based applications,
we analyzed different software interfaces. We looked
into vital functions such as the automatic layout of
the graphs. But we also looked into interface details
that seem to be marginal, but are used so often that
they are equally critical for the user experience (e.g.,
the specific interaction modes supported to discon-
nect one node from another). We classify the inter-
face features we found and give statistical numbers
on which specific solutions are prominent.
For most examined features, we found a large de-
gree of commonality in these user interfaces, but also
noted some unique and often promising approach in
one or two products. Both kinds of observations can
be employed as a cookbook by software developers.
Many of the discrepancies found (such as the lack of
a panning function) look like issues to be solved in
the next version of the corresponding software. It
comes at some surprise, however, that only a minor-
ity of the UIs offers an automatic layout function
[6], even though this has been a topic in research
for decades. A detailed analysis such as ours would
have prevented such issues at the outset.
Finally, we hope that our observations form a step-
ping stone for future research into the usability of
these features, helping to further improve the look
and feel of graph-based user interfaces.

5. ACKNOWLEDGMENTS
Jrn Loviscach’s work was partly funded by grant
1742B04 of the German Ministry of Education and
Research (BMBF). The views and conclusions con-
tained herein are those of the authors.

6. REFERENCES

[1] Alan F. Blackwell, “The reification of metaphor
as a design tool,” ACM Transactions on

Computer-Human Interaction, Vol. 13, No. 4,
490–530, New York, USA, 2006.

[2] Jonathan L. Gross and Jay Yellen, “Handbook
of graph theory,” CRC Press, 2003.

[3] Jun Kong and Kang Zhang and Xiaoqin Zeng,
“Spatial graph grammars for graphical user
interfaces,” ACM Transactions on Computer-
Human Interaction, Vol. 13, No. 2, 268–307,
New York, USA, 2006.

[4] Paul E. Haeberli, “ConMan: a visual pro-
gramming language for interactive graphics,”
ACM SIGGRAPH Computer Graphics, Vol. 22,
No. 4, 103–111, 1988.

[5] Marat Boshernitsan and Michael Downes, “Vi-
sual Programming Languages: A Survey,”
EECS Department, University of California,
Berkeley, Technical Report No. UCB/CSD-04-
1368, 2004.

[6] Ivan Herman and Guy Melancon and M. Scott
Marshall, “Graph visualization and navigation
in information visualization: A survey,” IEEE
Transactions on Visualization and Computer
Graphics, Vol. 6, No. 1, 24–43, 2000.

[7] Kasper Hornbæk and Benjamin Bederson and
Catherine Plaisant, “Navigation patterns and
usability of zoomable user interfaces with and
without an overview,” ACM Transactions on
Computer-Human Interaction, Vol. 9, No. 4,
362–389, 2002.

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 6 of 6


