
Audio Engineering Society

Convention Paper
Presented at the 127th Convention

2009 October 9–12 New York, NY, USA

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer
reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance
manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents.
Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New
York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof,
is not permitted without direct permission from the Journal of the Audio Engineering Society.

Editing MIDI Data
Based on the Acoustic Result

Sebastian Heise1, Michael Hlatky1, and Jörn Loviscach2

1 Hochschule Bremen (University of Applied Sciences), 28199 Bremen, Germany
sebastian@h3e.eu, mhlatky@acm.org

2 Fachhochschule Bielefeld (University of Applied Sciences), 33602 Bielefeld, Germany
joern.loviscach@fh-bielefeld.de

ABSTRACT

MIDI commands provide an abstract representation of audio in terms of note-on and note-off times, velocity, and
controller data. The relationship of these commands to the actual audio signal is dependent on the actual synthesizer
patch in use. Thus, it is hard to implement effects such as compression of the dynamic range or time correction
based on MIDI commands alone. To improve on this, we have developed software that silently computes a software
synthesizer’s audio output on each parameter update to support editing of the MIDI data based on the resulting audio
data. Precise alignment of sounds to the beat, sample-correct changes in articulation and musically meaningful dy-
namic compression through velocity data become possible.

1. INTRODUCTION

Even simple editing tasks on MIDI data are difficult due
to product-specific algorithms and sound-specific dif-
ferences. For example, sample-accurate quantization of
a beat produced by a drum synthesizer for example is
not possible if the duration of the attack phases of the
drum samples are not perfectly identical. Compression
of the dynamic range is in principle possible based on
simple computations on MIDI velocity data. This fea-
ture is implemented in most standard MIDI sequencer

software. However, the exact velocity value mapping
the plug-in’s audio output volume is not known, as the
velocity may influence other parameters of the plug-in,
as for instance the cutoff frequency of a filter. Editing
the dynamic range based on MIDI data is therefore hard
to control without the implementation of further pa-
rameter controls. Another issue with the editing of raw
MIDI data is that it is difficult to precisely edit the per-
formance articulation such as for instance to achieve
accurate legatos if one does not know the precise decay
characteristics of the synthesizer patch at hand.

AES

Heise et al. Editing MIDI Data Based on the Acoustic Result

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 2 of 6

The MIDI editor described in this paper forms a feed-
back loop by taking the actual audio signal into account
that is produced by a VST standard software synthesizer
plug-in. The user can for instance use the peaks in the
audio output of a drum sampler for precise beat quanti-
zation. Likewise, as also the exact audio decay charac-
teristics for each MIDI event are known to the system,
the system can automatically tweak individual MIDI
events in the score in order to achieve more natural
sounding staccato and legato effects. Furthermore, with
the audio data at hand, the exact audio level envelope
for each MIDI event can be employed to make informed
level adjustments on the basis of MIDI velocity and
volume controller data. Thus, it is possible to produce
sophisticated compression or expansion control curves
of the dynamic range.

2. RELATED WORK

MIDI [1] commands have been used for storage and
transfer of musical information since the standard was
defined in 1982. MIDI data hereby carries information
about the pitch of a tone to be synthesized, as well as its
associated volume and duration. As the synthesizer used
to generate sound is dependent on the user, it is not pos-
sible to predict the resulting sound output based on the
MIDI data alone.

Some software, such as Celemony’s Melodyne [2] or
Steinberg’s Cubase VariAudio [3] allow for the extrac-
tion of MIDI data from existing audio material. In these
editors, audio data is analyzed in terms of pitch over
time, and from this, MIDI notes are generated, which
can be used as a template to process the audio or can be
fed into an additional synthesizer. This could be used to
double up a vocal melody with another instrument.

MIDI data has also been used is audio compression ap-
plications. Modegi [4], for instance, extracts sinusoidal
waveforms from audio source material. The sinusoidal
waveforms are approximated by harmonic complex
functions over time. This information is coded in MIDI
commands, which are transferred from a sender to a
receiver. The receiver feeds the MIDI data into a syn-
thesizer instrument, which produces again audio data.

In a previous work [5], we described how to render in-
dependent waveform plots for each MIDI event onto a
piano-roll style editor. For that purpose, we developed a
system, which silently computes the audio output of
VST synthesizers. We use a proprietary host software

that runs several instances of a VST plug-in in a back-
ground thread. The rendering of thousands of wave-
forms onto the computer screen in real-time is carried
out directly on the graphic cards. In that work, we used
color to provide feedback about different timbre regions
on the piano-roll editor. For every MIDI event, the zero
crossing rate (ZCR) of the corresponding audio data is
extracted and mapped to the hue value of the HSB color
space. The result is a color tint for each, reddish areas
thereby representing mellow sounds, and bluish areas
representing more bright sounds.

In this work we extend our previous software to provide
a feedback loop for advanced automated editing of the
MIDI input data. The audio data of the VST synthesizer
plug-in is analyzed and, depending on settings provided
by the user, changes on the audio data’s generating
MIDI data can be carried out.

3. IMPLEMENTATION

This work presents two advanced MIDI editing modes
in the time domain: Sample-accurate beat quantization
and sample-accurate performance articulation such as
legatos. Furthermore, three different dynamic level ad-
justment modes are introduced, based on the note-on
velocity data only, on polyphonic aftertouch, and, in the
third mode, based on channel volume messages. In each
of the five modes, the editing decisions are automated,
system-driven and based on the synthesized audio out-
put of the corresponding MIDI events.

Fig. 1: The user interface of the software. It resembles a
common piano-roll style MIDI editor, the menu, how-
ever, provides access to the advanced MIDI editing ca-
pabilities described in this work. In addition to this, the

Heise et al. Editing MIDI Data Based on the Acoustic Result

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 3 of 6

corresponding waveform for each MIDI note is plotted
on top of the note’s bar.

3.1. Sample-Accurate Beat Quantization

Quantization of non-aligned and de-quantization of
aligned MIDI events are features often used in MIDI
editing: Apple’s Logic for instance provides a so-called
“humanize” function for the de-quantization of MIDI
events, and allows for the quantization of raw MIDI
data to different bars. It is common that composers, of
electronic music in particular, want to align sound sam-
ples precisely to the beat of a musical composition. Af-
ter the user has entered the MIDI data manually, using
for example a MIDI keyboard, the quantization com-
mands can be used to align the recorded MIDI events to
a previously defined time grid. In standard MIDI edi-
tors, the note-on and note-off events times are therefore
aligned with this time grid. This quantization process
works well, providing attack characteristics of the dif-
ferent MIDI event’s corresponding synthesized audio
data are fairly similar. In the case that they are not, the
non-precisely aligned sound’s attacks cause the beats to
fall apart.

Fig. 2: Waveform plot of the first 3,000 samples of a
synthesized bass drum sound, taken from the Freesound
database1. The five possible quantization markers are
displayed as grey bullets. The sound is not edited sam-
ple-precisely, and therefore takes exactly 197 samples
until the actual attack (1). Furthermore the 1711th sam-
ple (3) has the maximum negative value, the corre-
sponding closest-to zero-crossing sample is at 1505th
position (2). The maximum positive value sample is at

1http://www.freesound.org/samplesViewSingle.php?id=2085

2130th position (5), the corresponding closest-to zero-
crossing sample at 1919th position (4).

Our system can precisely analyze the audio attack char-
acteristics of each MIDI note and readjust the MIDI
event’s times exactly, depending on three different op-
tions: The first option provides an alignment to the
audio data’s first sample with a value different from
zero; the second provides an alignment to the audio
data’s sample with the greatest positive or negative
value; the third option picks the ultimate zero crossing
occurring before the sample with the highest positive or
negative value as an alignment point. This is supposed
to ensure maximum correlation between different wave-
forms.

In Fig. 2, a typical synthesized bass drum sound is
shown. If normal MIDI quantization was applied on the
sound, the attack would have a delay of 197 samples.
Our software can precisely align the attack of this sam-
ple to the time-grid by shifting the MIDI note-on com-
mand forward by a time corresponding to 197 audio
samples. Furthermore, our software supports an ad-
vanced quantization functionality: The sound’s align-
ment position could also be sample 1707, the sample
with the maximum negative value, or sample 1505, the
closest-to zero-crossing sample before the maximum
negative value. Correspondingly, the sound could also
be aligned to the positive maximum value sample at
position 2130, and the closest-to zero-crossing sample
before this at position 1919.

3.2. Sample-Accurate Performance Articula-
tion: Legato

Standard MIDI editing software allows for the process-
ing of MIDI notes to achieve legato effects. However,
this only works if the MIDI note’s corresponding audio
ends with the MIDI note-off message. This is normally
not the case in standard audio synthesizers. The audio
wave corresponding to a MIDI note can end even before
the note-off event, or it may last substantially longer.
The automated editing of accurate musical articulation
is therefore seldom possible. It is necessary to carry out
extensive manual editing to achieve this commonly de-
sired effect. Our software analyzes the audio data corre-
sponding to each MIDI note; therefore it knows the de-
tailed decay characteristics of each sound. For the edit-
ing of the musical articulation, a threshold for the decay
of the sample on which a new sound shall start can be
adjusted by the user, for instance -60 dBFS RMS. The

! "!! #!!! #"!! $!!! $"!! %!!!
!#

!!&'

!!&(

!!&)

!!&$

!

!&$

!&)

!&(

!&'

#

*#+ *$+ *)+

*"+

*%+

,-./0123.45/26

7322089:.

Heise et al. Editing MIDI Data Based on the Acoustic Result

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 4 of 6

MIDI note-off event of this sound is then delayed, so
that the sound lasts longer.

Fig. 3: Midi notes on the piano roll editor with
corresponding waveforms plotted on top. In the
particular setting for the synthesizer used, the plug-in
produces audio although it already received the note-off
message. The synthesized audio of the MIDI notes
displayed in this figure obviously is not legato.

Fig. 4: The same MIDI notes as in Figure 3 after the
legato effect is applied. The resulting sound is legato,
which can be seen from the waveforms: the audio pro-
duced by the synthesizer now overlaps.

3.3. Level Adjustments

Standard MIDI editors allow remapping MIDI dynam-
ics. In particular, every incoming note-on's velocity
value may be multiplied with a fixed number. This,
however, does not provide precise level adjustments of
the synthesizer's audio, as the mapping of the input ve-

locity to the produced audio’s levels is unknown. This
situation is rectified in the level adjustment mode of our
system. For all 127 possible velocity value of every
MIDI note of the synthesizer patch at hand the system
precomputes the corresponding audio levels.

Fig. 5: Schematic overview of the MIDI compression
functionality. For each MIDI note, a look-up in a pre-
computed database of MIDI velocity to volume map-
ping is performed. Depending on user parameter input
of maximum volume, threshold and compression ratio,
the volume correction is computed. Furthermore, the
user needs to decide whether the MIDI note’s velocity
or channel volume are affected by the compressor, or if
polyphonic aftertouch messages are to be generated by
the system to carry out the volume adjustments.

Then one of three level adjustment modes can be
picked. In the first mode, a maximum level in dBFS
RMS of the produced audio can be defined which shall
not be exceeded, and the synthesizer's MIDI note-on
messages velocity values are limited correspondingly.
The user can choose whether the single MIDI channel
volume level or all synthesized audio volume level is
used in the maximum level definition. This allows for
the processing of a single MIDI channel's, or the overall
volume. The effect comes close to a brick-wall limiter.

MIDI Note Adaptation MIDI Note

Look-up in Volume Mapping for each MIDI Note
and all possible Velocity Values

C -1 G 9

Calculation of MIDI Parameter
Modification

Volume Information

a) MIDI note velocity
b) MIDI channel volume
c) MIDI polyphonic aftertouch messages

Parameter Input
from User

...

Heise et al. Editing MIDI Data Based on the Acoustic Result

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 5 of 6

However, no compression on the actual audio data is
carried out.

In the second mode, more sophisticated compression
effects become available by allowing the user to chose a
threshold in dBFS plus a ratio value. The synthesizer's
output of the sequence at hand is analyzed; the MIDI
data are marked for portions in which the audio exceeds
the set threshold level. During playback of such a por-
tion, the MIDI channel's volume value is attenuated
depending on the desired ratio and the audio data output
level. This means, a look-up is performed on how much
the MIDI channel volume value has to be adjusted to
achieve the desired output volume. This enables more
sophisticated compression effects.

In the third mode, MIDI polyphonic aftertouch mes-
sages are used to achieve a compression effect. This use
of aftertouch looks surprising at first, but comes in
handy as sample-based piano or drum synthesizer plug-
ins often map different audio samples to be played back
already depending on the input velocity to achieve a
more natural sound. The analysis of the output value is
performed as described before.

3.4. Software

The Software has been implemented in C# using the
Microsoft .NET 3.5 framework. It provides a graphical
user interface similar to the standard piano-roll editor
commonly found in digital audio workstation software.
The interface also offers familiar interaction features
such as drag&drop of MIDI notes. The software is
based on a proprietary VST host that allows audio ren-
dering tasks to run in the background. While the user
edits the score data or the synthesizer’s settings, the
waveform data are computed in parallel processing
threads. The rendering of a plug-in’s audio data of an
underlying standard MIDI score takes only fractions of
a second on a modern multicore computer: As the syn-
thesized sounds are not listened to, we can run several
copies of a software synthesizer at full speed in parallel
without artificially throttling them to the playback sam-
pling rate.

Fig. 6: Schematic diagram of the software’s mode of
operation. The user provides MIDI data. Furthermore,
the user subsequently decides how the MIDI data will
be adapted in terms of time correction or volume ad-
justments. The VST host software runs several instances
of the synthesizer plug-in in parallel, allowing live
audio output while the audio data is analyzed. On basis
of the analyzed audio data, changes are affected on the
original MIDI data.

4. CONCLUSION AND OUTLOOK

We have presented a system that can do precise adjust-
ments of MIDI data based on user input and the actual
audio output data produced by a synthesizer plug-in. To
accomplish this, our system analyzes the synthesizer's
audio output data in a background thread and performs
adjustments on the MIDI input data, thereby forming a
feedback loop.

MIDI Data

MIDI Data
Adaptation

Synthesizer
Plug-in

Synthesizer
Plug-in

Synthesizer
Plug-in

Synthesizer
Plug-in

Audio Data
Analysis

Audio Data
Live Output

VST Host Software

Heise et al. Editing MIDI Data Based on the Acoustic Result

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 6 of 6

The analysis is performed without playing back the re-
sulting audio. Therefore, the plug-in's computational
speed is not limited to the playback sampling rate.

Future updates of the software may support equalization
in the frequency domain, multiband compression, and
the attenuation or amplification of single MIDI notes
based on their actual audibility in the mix. Furthermore,
in future implementations, the characteristics of a syn-
thesizer may be learned by our VST host by means of
machine learning and neural networks, thus reducing the
amount of required rendering tasks in the pre-
computation for the volume correction.

5. REFERENCES

[1] Moog, R.A.: MIDI: Musical Instrument Digital
Interface. JAES Volume 34 Issue 5 pp. 394-404,
1986.

[2] Celemony: Melodyne. Retrieved July 13, 2009,
http://www.celemony.com/cms/, 2009.

[3] Steinberg: Cubase. Retrieved July 13, 2009,
http://www.steinberg.net/en/products/musicproduct
ion/cubase5_product.html, 2009.

[4] Modegi, T.: Very Low Bit-rate Audio Coding
Technique Using MIDI Representation. Proceed-
ings of the 11th international workshop on Network
and operating systems support for digital audio and
video. Port Jefferson, New York, United States.
Pages: 167 - 176, 2001.

[5] Heise, S., Loviscach, J.: Waveforms, not Bricks: A
Visually Enriched MIDI Editor. Presented at the
AudioMostly Conference, (Glasgow, Scotland,
September 2-3 2009), 2009.

