Mathematik 2 für Regenerative Energien

Klausur vom 20. September 2010

Jörn Loviscach

Versionsstand: 19. September 2010, 22:25

Drei Punkte pro Aufgabe. Mindestpunkzahl zum Bestehen: 15 Punkte. Hilfsmittel: maximal acht einseitig oder vier beidseitig beschriftete DIN-A4-Spickzettel beliebigen Inhalts, möglichst selbst verfasst oder zusammengestellt; kein Skript, keine andere Formelsammlung, kein Taschenrechner, kein Computer, kein Handy.

Name Vorname Matrikelnummer E-Mail-Adresse

Fingerübungen

- 1. Im \mathbb{R}^3 sind zwei Geraden gegeben: die Gerade durch die Punkte (5|3|1) und (6|5|4) und die Gerade durch die Punkte (4|3|2) und (2|-1|-4). Sind diese beiden Geraden parallel zueinander? Begründung!
- 2. Bestimmen Sie einen (einer reicht!) Eigenvektor dieser Matrix (keine eindeutige Lösung):

$$\begin{pmatrix} 1 & 2 \\ 14 & 4 \end{pmatrix}$$

- 3. Finden Sie die allgemeine Lösung der Differentialgleichung y'' + 4y' + 8y = 0.
- 4. Finden Sie durch Trennung der Variablen die Lösung der Differentialgleichung $y' \stackrel{!}{=} \sqrt{xy}$ zur Anfangsbedingung $y(3) \stackrel{!}{=} 5$.
- 5. Bestimmen Sie den komplexen Fourier-Koeffizienten c_4 für die Funktion f, welche die Periode 4 hat und für $-2 \le t < 2$ durch f(t) := t gegeben ist.
- 6. Hat die Funktion $f(x,y) := \frac{4}{3}x^3 + x^2 x 2xy + y^2$ an irgendeiner Stelle $(x_0|y_0) \in \mathbb{R}^2$ ein lokales Minimum? Wenn ja, an welchem $(x_0|y_0)$? Begründen Sie das mit den ersten und zweiten Ableitungen.

Bitte wenden!

Kreative Anwendung

- 7. Geben Sie im \mathbb{R}^3 einen Vektor (aber nicht den Nullvektor) an, der in der yz-Ebene liegt und senkrecht auf dem Vektor $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ steht (keine eindeutige Lösung).
- 8. Sind lineare Gleichungssysteme mit der Koeffizientenmatrix $\begin{pmatrix} 1 & 1 & 3 \\ 2 & 2 & 5 \end{pmatrix}$
 - immer lösbar,
 - typischerweise lösbar,
 - selten lösbar oder
 - nie lösbar?

Begründen Sie Ihre Antwort mit dem Rang oder mit dem Defekt dieser Matrix.

- 9. Finden Sie eine spezielle Lösung der Differentialgleichung $y'' y \stackrel{!}{=} e^x$.
- 10. Geben Sie die Funktion an, deren Laplace-Transformierte gleich $\frac{s}{1+4s^2}$ ist.
- 11. Der natürliche Logarithmus wird durch seine Tangentengerade an $x_0 = 5$ genähert. Schätzen Sie den Fehler dieser Näherung auf dem Bereich $4 \le x \le 6$ konservativ mit Hilfe der zweiten Ableitung.
- 12. Im \mathbb{R}^2 ist das Dreieck mit den Eckpunkten (1|2), (4|2) und (4|5) gegeben. Integrieren Sie die Funktion $(x|y) \mapsto x \cdot y$ über dieses Dreieck. Lassen Sie das Ergebnis als Summe von Brüchen stehen.