Determinante, Spatprodukt, Vektorprodukt, inverse Matrix

Jörn Loviscach

Versionsstand: 22. April 2010, 21:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.

1 Determinante

Die Determinante [determinant] ordnet jeder quadratischen Matrix A eine Zahl $\det(A)$ zu. Diese Zahl sagt etwas über die "Größe" der Matrix; Details dazu folgen gleich. Die Determinante ist aber kein Betrag, insbesondere, weil sie negativ werden kann. Der Name "Determinante" stammt daher, dass die Determinante einer Koeffizientenmatrix das Verhalten eines linearen Gleichungssystems "bestimmt", wie wir bei der inversen Matrix noch sehen werden.

Wenn die Matrix A über ihre Elemente gegeben ist, zum Beispiel $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, schreibt man die Determinante auch mit Strichen um die Elemente der Matrix:

$$\det(A) =$$
 .

Also Vorsicht: Runde Klammern (oder in den USA eckige Klammern) bezeichnen eine Matrix, Striche links und rechts dagegen eine daraus berechnete Zahl, die Determinante der Matrix.

In MATLAB® und Co. heißt die Funktion zum Berechnen von Determinenten schlicht det. In Wolfram Alpha kann man ebenfalls det schreiben.

Auch wenn die Schreibweise mit den Strichen an einen Betrag erinnert, ist die Determinante etwas Anderes. Sie gibt zwei geometrische Eigenschaften einer $n \times n$ -Matrix an:

1.	<u>Der Betrag der Determinante (also ihr</u> Wert ohne Vorzeichen) sagt:

2. Das Vorzeichen der Determinante sagt:

Damit kann man viele Determinanten ohne Rechnung angeben:

$$\begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} 4 & & & \\ & & & \\ & & & \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} 5 & & & \\ & & & \\ & & & \end{vmatrix}, \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = \begin{vmatrix} 6 & & & \\ & & & \\ & & & \\ & & & \end{vmatrix}, \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} 7 & & & \\ &$$

Was passiert, wenn man zwei $n \times n$ -Matrizen hintereinander anwendet?

$$\det(AB) = \int_{0}^{11}$$

Außerdem folgen anschaulich sofort diverse Rechenregeln für Umformungen der Spalten einer Determinante. Es stellt sich nachher heraus, das sie ebenso für die Zeilen der Determinante gelten:

1. Multiplikation einer Spalte (Zeile) einer Matrix mit einer Zahl:

2. Vertauschen zweier Spalten (Zeilen) einer Matrix:

1 DETERMINANTE 3

3.	Zwei identische Spalten (Zeilen):
4.	Eine Spalte (Zeile) einer Matrix als Summer zweier Vektoren:
5.	Addition eines Vielfachen einer Spalte (Zeile) auf eine <i>andere</i> (!) Spalte (Zeile) der Matrix:
	16

Den mathematischen Namen für diese Sammlung an Rechenregeln müssen Sie sich nicht merken: "Die Determinante ist eine antisymmetrische Multilinearform der Spalten der Matrix."

1 DETERMINANTE 4

Mit den Rechenregeln kann man nun die Determinante jeder Matrix berechnen. Ein einfaches Beispiel ist:

$$\left|\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right| = \left|\begin{array}{cc} 17 \\ \end{array}\right|$$

Hieran liest man die allgemeine Formel für 2×2 -Determinanten ab:

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = \left| \begin{array}{cc} a & b \\ a & c \end{array} \right|$$

Für 3×3 -Determinanten findet man eine Zerlegung in drei 2×2 -"Unter"determinanten:

$$\left| \begin{array}{ccc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right| = \left| \begin{array}{ccc|c} 19 \\ \end{array} \right|$$

Dieser Schritt heißt "Entwicklung nach der ersten Spalte". Er funktioniert entsprechend mit anderen Spalten und bei größeren Determinanten. Durch das Vertauschen entstehen Vorzeichen im Schachbrettmuster:

Wenn man diese Rechnung zu Ende ausführt, sieht man, dass Spalten und Zeilen gleichberechtigt sind – dass also für die Reihen die entsprechenden Rechengesetze gelten wie für die Zeilen und dass die Determinante beim Transponieren gleich bleibt: $det(A^T) = det(A)$.

Wenn man die Unterdeterminanten für die 3×3 -Matrix ausrechnet, findet man die leicht zu merkende Regel von Sarrus:

$$\left|\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right| = \left|\begin{array}{ccc} 20 & & & \\ & & & \\ \end{array}\right|$$

Vorsicht, weil immer wieder falsch gemacht: Diese Regel gilt *nicht* für 4×4 oder noch größere Determinanten! (Wer's nicht glaubt, rechne einfach eine 4×4 Determinante einmal so und einmal korrekt per Entwicklung aus.)

Wenn man eine $n \times n$ -Determinante naiv durch Entwickeln aufdröselt, muss man die Summe von n! Produkten mit je n Faktoren berechnen. Der Rechenaufwand und die Rundungsfehler explodieren mit größeren n, selbst wenn man geschickt rechnet. Man schreibt deshalb die Determinanten größerer Matrizen allenfalls als Zwischenschritt hin, um Formeln zu vereinfachen, vermeidet aber strikt, solche Determinanten tatsächlich auszurechnen.

2 Spatprodukt

Das Spatprodukt [triple product] ist eine Sonderausstattung des \mathbb{R}^3 . Allerdings ist hat es nicht nur zwei Faktoren, sondern drei: Man nimmt drei Vektoren und stellt sie nebeneinander in eine 3×3 -Determinante. Das Spatprodukt der

Vektoren
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$ und $\begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$ ist also:

Warum "Spat"produkt? – Weil es das Volumen des Spats (Parallelepiped; vgl. Kalkspat-Kristall) berechnet, der von den drei Vektoren aufgespannt wird, mit Vorzeichen für die Orientierung. Um das zu verstehen, sieht man sich an, was

die Matrix
$$\begin{pmatrix} 1 & 3 & 4 \\ 2 & 0 & -2 \\ 3 & 2 & 1 \end{pmatrix}$$
 aus dem Einheitswürfel macht:

Der Volumeninhalt $1 \cdot 1 \cdot 1 = 1$ des Einheitswürfels wird also der Volumeninhalt des Spats. Die Determinante gibt das Verhältnis dieser beiden Volumina an, samt Vorzeichen. Also ist das Volumen des Spats mit Vorzeichen gleich der Determinante und damit gleich dem Spatprodukt.

3 Vektorprodukt

Wenn man das Spatprodukt von eben nach der ersten Spalte entwickelt, sieht man:

$$\left|\begin{array}{ccc} 1 & 3 & 4 \\ 2 & 0 & -2 \\ 3 & 2 & 1 \end{array}\right| = \left|\begin{array}{ccc} 23 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}\right|$$

Also kann man das Spatprodukt mit dem Skalarprodukt und einem komischen neuen Vektor schreiben:

Diesen Vektor nennen wir das Vektorprodukt oder Kreuzprodukt [cross produkt] von $\begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$ und $\begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$. Mathematisch stammt das Vektorprodukt also vom Spatprodukt und damit von der Determinante als Das Vektorprodukt $\mathbf{b} \times \mathbf{c}$

vom Spatprodukt und damit von der Determinante ab: Das Vektorprodukt $\mathbf{b} \times \mathbf{c}$ zweier Vektoren \mathbf{b} und \mathbf{c} ist derjenige Vektor, für den gilt:

Mit Hilfe dieser 3×3 -Determinante kann man sich die Formel für das Vektorprodukt merken (Spalten streichen, Unterdeterminante, Schachbrettregel):

$$\left(\begin{array}{c} 3\\0\\2 \end{array}\right) \times \left(\begin{array}{c} 4\\-2\\1 \end{array}\right) = \begin{vmatrix} 26\\ \\ \end{vmatrix}$$

Vorsicht: Weil das Vektorprodukt vom Spatprodukt abstammt, funktioniert es nur im Dreidimensionalen.

In MATLAB® und Co. heißt die Funktion für das Vektorprodukt cross. In Wolfram Alpha kann man zum Beispiel ein \times zwischen die Vektoren setzen.

Wenn man die drei Vektoren ringartig durchtauscht, ändert sich nichts am Volumen und an der Händigkeit des Spats, also:

Wenn man dagegen zwei der drei Vektoren vertauscht, ändern sich die Händigkeit und damit das Vorzeichen der Determinante:

Schon hieran – oder an der Rechnung mit Zahlen im vorigen Abschnitt – sieht man, dass das Vektorprodukt *anti*symmetrisch (oder *anti*kommutativ) ist:

Das ist für ein Produkt eher blöd. Insbesondere gilt für das Vektorprodukt eines Vektors mit sich selbst:

Allerdings behält das Vektorprodukt die wichtigste Eigenschaft des Produkts von Zahlen: Man darf ein- und ausklammern.

31	
4	Geometrie des Vektorprodukts
	Vektorprodukt erlaubt, das Spatprodukt (=Volumen und Orientierung des ts) der drei Vektoren a , b und c so hinzuschreiben:
Wer	nn man a = b wählt, sieht man damit:
	auso klappt das natürlich mit dem Vektor c statt b . Damit hat man die erste metrische Eigenschaft des Vektorprodukts:
ob e	Nun ist zwar die Richtung des Vektorprodukts bekannt, aber man weiß nicht, is sozusagen nach oben oder nach unten zeigt, geschweige denn, wie lang es Die zweite geometrische Eigenschaft des Vektorprodukts klärt die erste Frage:
Das	s das so sein muss, kann man sich verananschaulichen, wenn drei Vektoren

Dass das so sein muss, kann man sich verananschaulichen, wenn drei Vektoren a, b und c hinmalt, deren Spatprodukt positiv ist, und drei Vektoren hinmalt,

deren Spatprodukt negativ ist:
36
Die letzte Frage ist, welche Länge der Vektor hat, der aus dem Vektorprodukt
herauskommt. Um das zu lösen, bildet man – sehr künstlich – das Spatprodukt
von $\mathbf{b} \times \mathbf{c}$, \mathbf{b} und \mathbf{c} . Dieses Spatprodukt lässt sich auf zwei Arten ausrechnen:
37 F
Dog opgibt die duitte geometrieche Figengebeft des Velstermedulsts.
Das ergibt die dritte geometrische Eigenschaft des Vektorprodukts:

Diese dritte Eigenschaft kann man benutzen, um die Länge des Vektorprodukts zweier Vektoren ${\bf a}$ und ${\bf b}$ mit dem Winkel ϕ zwischen den beiden

auszudrücken:
In der Physik kommt das Vektorprodukt zum Beispiel bei der Drehbewegung
vor. Wenn der Vektor $\boldsymbol{\omega}$ parallel zur Drehachse ist (Rechte-Hand-Regel) und mit seiner Länge die Winkelgeschwindigkeit angibt, der Punkt mit Ortsvektor \mathbf{r}_0 auf der Drehachse liegt und \mathbf{r} ein Ortsvektor eines Punkts des rotierenden Körpers ist, ist der Geschwindigkeitsvektor des Punkts gleich $\mathbf{v} = \boldsymbol{\omega} \times (\mathbf{r} - \mathbf{r}_0)$.
5 Zusammenfassung: Produkte mit Vektoren
Multiplikation mit einem Skalar (nicht mit Skalarprodukt verwechseln):
Matrix mal Spaltenvektor:
41
Zeilenvektor mal Matrix:
Skalarprodukt (unter anderem in den Räumen \mathbb{R}^n):

Spatprodukt (nur im \mathbb{R}^3):
Vektorprodukt (nur im \mathbb{R}^3):
45
Skalar- und Vektorprodukt mit Sinus und Cosinus ausgedrückt:
46 46

6 Inverse Matrix

Betrachten wir ein lineares Gleichungsystem $A\mathbf{x} = \mathbf{b}$ mit n Gleichungen und n (also genau so vielen!) Unbekannten. Dann ist die Koeffizientenmatrix A quadratisch und man kann ihre Determinante $\det(A)$ bilden. Je nachdem, ob diese Determinante null ist oder nicht, passiert geometrisch etwas Verschiedenes:

```
• \det(A) = 0 \Longrightarrow
```

12

 $\bullet \ \det(A) \neq 0 \quad \Longrightarrow \quad$

Im Fall $\det(A) \neq 0$ kann man also immer und eindeutig von jeder Inhomogenität **b** auf ein dazu passendes **x** schließen, welches das lineare Gleichungssystem löst: $A\mathbf{x} = \mathbf{b}$. Zu einem Vielfachen der Inhomogenität **b** gehört ein Vielfaches von **x**. Zu einer Summe zweier **b** gehört die Summe der entsprechenden **x**. Das heißt, man findet eine eindeutig bestimmte $n \times n$ -Matrix, die **b** zu **x** macht. Diese Matrix heißt die inverse Matrix A^{-1} zu A. Sie gibt es nur für quadratische Matrizen A und nur wenn $\det(A) \neq 0$. Sie erfüllt für alle Vektoren **x** und $\mathbf{b} \in \mathbb{R}^n$:

Die Schreibweise A^{-1} ist in der Tat wie der Kehrwert und wie die Potenz -1 bei Zahlen gemeint: Analog zu $3^{-1} \cdot 3 = 1$ gelten (warum?)

$$A^{-1}A = 1$$
 und $AA^{-1} = 1$.

Bei Zahlen kann man von der Null keinen Kehrwert bilden; entsprechend kann man von nichtquadratischen Matrizen und von Matrizen mit Determinante null keine inverse Matrix bilden.

In MATLAB® und Co. sowie in Wolfram Alpha schreibt man inv(A) oder die Potenz -1 für die inverse Matrix.