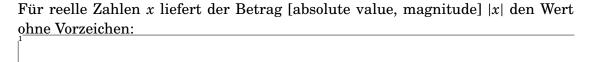
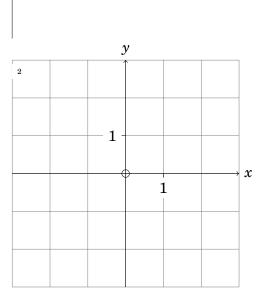
Diverse weitere Funktionen. Komposition von Funktionen

Jörn Loviscach

Versionsstand: 1. Dezember 2009, 15:07

1 Betrag





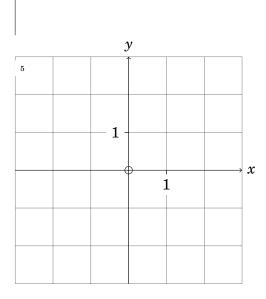
Man kann |x| auch als den vorzeichenlosen Abstand der Zahl x vom Nullpunkt auffassen. Mit komplexen Zahlen und mit Vektoren wird das klarer. Von dort ist auch die andere Darstellung des Betrags als Länge bekannt:

In diesem Sinn ist |a-b| der vorzeichenlose Abstand zwischen der Zahl a und der Zahl b.

2 SIGNUM 2

2 Signum

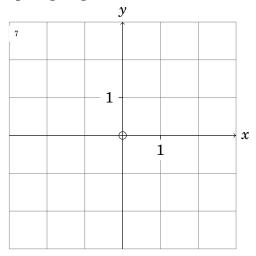
Die Signum-Funktion [sign] liefert für jede reelle Zahl *x* das Vorzeichen:



3 Kaufmännische Rundung

Die kaufmännische Rundung ist eine Funktion mit Definitionsbereich $\mathbb R$ und Bild-

menge . Zahlen, deren Dezimaldarstellung nach dem Komma mit den Ziffern 1 bis 4 beginnt, werden zum Ursprung hin gerundet; die übrigen vom Ursprung weg:



Die kaufmännische Rundung bevorzugt (für positive Zahlen) ein wenig das Aufrunden: Wenn die erste Nachkommastelle eine 5 ist, also gerade auf der Kante liegt, rundet sie immer auf. Das kann ein Ungleichgewicht verursachen. Die "mathematische Rundung" [round to even] arbeitet deshalb anders, wenn die erste Nachkommastelle eine 5 ist und nur Nullen folgen: Dann wird so gerundet,

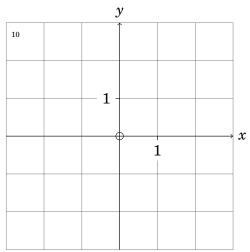
dass die Zahl gerade wird. Aus 3,5 wird also und aus 6,5 wird . Diese Rundung wird zum Beispiel intern bei der üblichen Gleitkommaarithmetik im Rechner benutzt. Im Mittel wird hier so häufig abgerundet wie aufgerundet.

4 Abschneiden der Nachkommstellen

Wenn man in den C-Sprachen dies macht:

```
double a = 1.2345; int b = (int)a;
```

werden die Nachkommastellen abgeschnitten [truncation], auch bei negativen Zahlen. Die Rundung ist also immer zum Ursprung hin. (In C und C++ ist der ausdrückliche Cast (int) bzw. int(...) gefährlicherweise nicht nötig.)

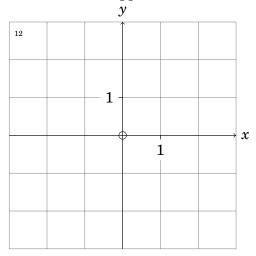


5 Floor und Ceiling

Floor $x \mapsto \lfloor x \rfloor$ ist die Abrunden-Funktion (auch als Gaußklammer bekannt); Ceiling $x \mapsto \lceil x \rceil$ ist die Aufrunden-Funktion. Die englischen Namen (floor = Fußboden, ceiling = Zimmerdecke) legen ein Bild von einem Wolkenkratzer nahe:

Man kann auch sagen, dass $\lfloor x \rfloor$ die größte ganze Zahl ist, die $\leq x$ ist, und dass $\lceil x \rceil$ die kleinste ganze Zahl ist, die $\geq x$ ist.

Diese beiden Funktionen sind *nicht* symmetrisch zum Ursprung, sondern bilden saubere Treppen:

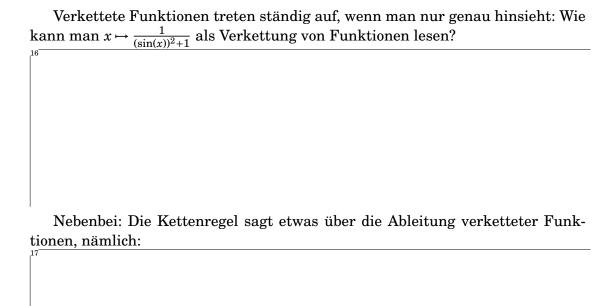


6 Komposition von Funktionen

Die Komposition = Verkettung = Hintereinanderausführung [composition] von Funktionen f und g bedeutet, erst die Funktion g anzuwenden und dann auf deren Ergebnis eine Funktion f anzuwenden. Das ergibt wieder eine Funktion. Die wird $f \circ g$ genannt ("f nach g"). Beispiel: $\sin \circ \exp$ bewirkt dies:

Man beachte die überraschende Reihenfolge. Die ist typischerweise wichtig: $\exp \circ \sin$ bewirkt etwas Anderes! (Wie kann man das schnell sehen?)

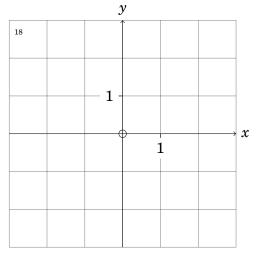
Streng müsste man sich hier noch über Definitionsbereiche Gedanken machen: Aus der inneren Funktion darf nichts herauskommen, was die äußere nicht verarbeitet. Also darf man nicht gedankenlos alles Mögliche in die innere Funktion hineinwerfen. Beispiel: Was ist sinnvollerweise der Definitionsbereich von $\sqrt{\ \circ\ }$ ln?



Die Verkettung einer Funktion f mit sich selbst wird oft formal als Potenz geschrieben: $f^4 := f \circ f \circ f \circ f$. (Nicht mit der vierten Ableitung $f'''' = f^{(4)}$ verwechseln!) Wie schon gezeigt, kommt das zum Beispiel bei Iterationsverfahren vor. Die Umkehrfunktion – wenn sie existiert – wirkt hier wie die Potenz –1 und wird deshalb als f^{-1} geschrieben.

7 Vertikale Verschiebung und Streckung von Funktionsgraphen

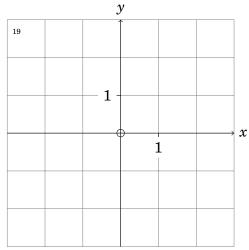
Addiert man zum Funktionswert f(x) eine Konstante, wird der Funktionsgraph vertikal verschoben – nach oben für eine positive Konstante:



Multipliziert man den Funktionswert f(x) mit einer Konstante, wird der Funktionsgraph von der x-Achse weg gestreckt (Konstante > 1), zu ihr hin gestaucht (Konstante zwischen 0 und 1) oder obendrein an der x-Achse gespiegelt

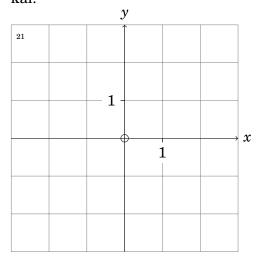
7 VERTIKALE VERSCHIEBUNG UND STRECKUNG VON FUNKTIONSGRAPHEN6

(negative Konstante):



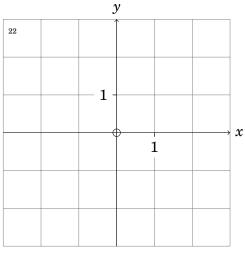
Alles auf einmal erhält man, wenn man eine Funktion $y \mapsto my + b$ mit der

Funktion f verkettet, denn dies bedeutet $x\mapsto$. In dieser Schreibweise wird erst gestreckt/gestaucht/gespiegelt und dann verschoben, alles vertikal.

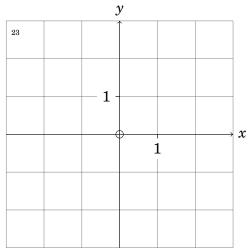


8 Horizontale Verschiebung und Streckung von Funktionsgraphen

Addiert man zu x innerhalb von f(x) eine Konstante, wird der Funktionsgraph horizontal verschoben – nach links (!) für eine positive Konstante:



Multipliziert man x in f(x) mit einer Konstante, wird der Funktionsgraph von der y-Achse weg gestreckt (Konstante zwischen 0 und 1!), zu ihr hin gestaucht (Konstante > 1!) oder obendrein an der y-Achse gespiegelt (negative Konstante):



Vorsicht: Verschiebung und Streckung funktionieren also horizontal genau anders herum als vertikal.

Alles auf einmal erhält man, wenn man f mit einer Funktion $x\mapsto (x-a)/k$ verkettet, denn dies bedeutet $x\mapsto$. In dieser Schreibweise (Vorsicht, ungewöhnlich!) wird der Graph geometrisch erst gestreckt/gestaucht/gespiegelt

und dann verschoben, alles horizontal.

