Elementare Längen, Flächen und Volumina. Bogenlänge. Rotationskörper

Jörn Loviscach

Versionsstand: 10. Januar 2010, 16:39

1 Elementare Längen, Flächen und Volumina

Der Umfang des Einheitskreises ist vom Bogenmaß bekannt. Wenn man den
Einheitskreis um den Faktor r skaliert, hat man einen Kreis mit Radius r . Bei
Skalieren um den Faktor r ändern sich alle Flächen um den Faktor r^2 , also:
Die Fläche eines Kreises mit Radius r muss nach r abgeleitet den Umfang erge-
ben. Außerdem ist sie null für $r = 0$. Also:
Ein Quader hat das Volumen:
3

4
So ein Gebilde heißt gerader Zylinder oder im Spezialfall, dass die Querschnitts-
fläche ein Vieleck [polygon] ist, ein gerades Prisma. Wenn die Querschnittsfläche
eine Kreisscheibe ist, spricht man von einem geraden Kreiszylinder.
Stellt man sich einen geraden Zylinder als Stapel von Bierdeckeln vor, ist
klar, dass man ihn neigen kann, ohne sein Volumen oder seine Höhe zu ändern.
Es ergibt sich ein schiefer Zylinder (oder im Spezialfall ein schiefes Prisma oder
ein schiefer Kreiszylinder):
Lässt man einen Körper von einer ebenen Grundfläche ausgehend gerad-
linig auf einen Punkt zulaufen, hat man einen Kegel. Im Spezialfall, dass die
Grundfläche ein Vieleck ist, spricht man von einer Pyramide. Offensichtlich kann
man jeden Kegel bei gleicher Höhe und gleichem Volumen in eine regelmäßige
Pyramide mit quadratischer Grundfläche umformen:
Es genügt also, sich das Volumen dieser Pyramide zu überlegen. Ein Würfel mit
Kantenlänge a zerfällt in sechs solche Pyramiden der Grundfläche a^2 und Höhe

a/2:

2 BOGENLÄNGE 4

2 Bogenlänge

Gegeben sei der Graph einer stetig differenzierbaren Funktion f zwischen $x = a$
und $x = b$. Wie lang ist die Kurve – in dem Sinne, dass man ein Maßband daran
legt?
12
Vorüberlegung: Wie kann ich von der Fahrtenschreiberkurve $t\mapsto v(t)$ eines
Lasters auf die gefahrene Entfernung (die gefahrene, nicht Luftlinie!) schließen?
Welche Geschwindigkeit steht auf dem Tacho, wenn ich so über den Graphen von
f fahre, dass ich die Stelle x zur Zeit x erreiche?
Also ist die "Bogenlänge" [arc length]:

Alter	nativ kann man sich das auch mit einem Polygonzug veranschaulichen:
3	Volumen von Rotationskörpern
graph eine l der G	Rotationskörper [solid of revolution] entstehe durch Rotation des Funktionsnen $x \mapsto r(x) \ge 0$ um die x -Achse. An der Stelle x sei seine Querschnittfläche Kreisscheibe mit dem Radius $r(x)$. (Hier wird nicht der Fall betrachtet, dass raph z. B. um die z -Achse gedreht wird!) Tieder im Sinne eines Stapels von Bierdeckeln ist das Volumen V des Körpers
zwisc	hen $x = a$ und $x = b$:
	as lässt sich auch anderes verstehen: Der mittlere Wert \overline{R} des Abstands von Achse für alle Punkte zwischen der Achse und der Kurve ist:
Im N	enner steht aber die Fläche A unter der Kurve $x\mapsto r(x)$. Also gilt:
	naulich heißt das: Das Volumen V ist die Fläche unter der Kurve mal dem des Schwerpunkts (Schwerpunkt der $Fläche!$) bei der Rotation (zweite

Pappus-Guldinsche Regel).						
4 Oberfläche von Rotationskörpern						
In der Situation des vorigen Abschnitts ergibt sich die Fläche M analog zur						
Länge einer Kurve:						
21						
Vorsicht: Dies ist nur die "Mantel"fläche. Gegebenfalls muss man noch die Flä-						
chen des Deckels unten und oben berücksichtigen!						
Diese Formel lässt sich auch anderes verstehen: Der mittlere Abstand \overline{r} des						
Abstands von der x-Achse für alle Punkte auf (!) der Kurve ist:						
22						
Im Nenner steht aber die Bogenlänge L der Kurve. Also gilt:						
23						
Anschaulich heißt das: Die Mantelfläche M ist die Länge unter der Kurve mal						
dem Weg ihres Schwerpunkts (Schwerpunkt der Kurve!) bei der Rotation (erste						

Pappus-Guldinsche Regel).						
24						