Seminar 12

Mathematik II für Regenerative Energien

Jörn Loviscach

Versionsstand: 20. Juni 2009, 19:55

- 1. Veranschaulichen Sie die Zustandsgleichung eines Mols eines idealen Gases, indem Sie das Volumen als Funktion von Druck und Temperatur darstellen. $R \approx 8 \text{ J/(K mol)}$.
- 2. Skizzieren Sie den Gradienten der Funktion $f(x,y) := x^y$ für $x \in (0,3]$ und $y \in [-2,2]$ als Vektorfeld.
- 3. Geben Sie zu $f(x) := x^y$ die Gleichung der Tangentialebene bei (x, y) = (3, 2) an.
- 4. Angenommen, x und y sind nicht genau bekannt: $x = 3 \pm 0.1$ und $y = 2 \pm 0.01$. Um welchen Betrag schwankt x^y ?
- 5. Finden und klassifizieren Sie die lokalen Extrema der Funktion $f(x, y) = x^4 2x^2 + y^2 + 3$ mit $(x, y) \in \mathbb{R}^2$