Mathematik II für Regenerative Energien

Klausur vom 6. Juli 2009

Jörn Loviscach

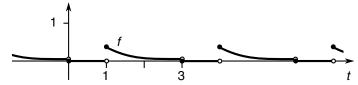
Versionsstand: 6. Juli 2009, 13:03

Drei Punkte pro Aufgabe. Mindestpunkzahl zum Bestehen: 15 Punkte. Hilfsmittel: vier einseitig oder zwei doppelseitig beschriftete Blätter Formelsammlung beliebigen Inhalts, möglichst selbst verfasst oder zusammengestellt; kein Taschenrechner oder Computer; kein Skript; keine andere Formelsammlung.

Name Vorname Matrikelnummer E-Mail-Adresse, falls nicht in rge0809-Liste

Fingerübungen

- 1. Im \mathbb{R}^3 sind eine Gerade und eine Ebene gegeben: die Gerade durch die Punkte A(3|2|1) und B(1|0|1) und die Ebene durch die Punkte C(1|1|1), D(2|1|1) und E(1|4|2). Schneiden sich Gerade und Ebene? Wenn ja, wo?
- 2. Der \mathbb{R}^2 werde an der *x*-Achse gespiegelt (also von oben nach unten geklappt) und danach um +90° um den Ursprung gedreht. Schreiben Sie die gesamte Abbildung (erst spiegeln, dann drehen) als eine einzige Matrix.
- 3. Lösen Sie die Differentialgleichung $y'' \stackrel{!}{=} y$ zu der Anfangsbedingung $y(0) \stackrel{!}{=} 1$, $y'(0) \stackrel{!}{=} 0$.
- 4. Geben Sie das Taylor-Polynom zweiten Grades (= Schmiegeparabel) für die Funktion $f(x) := x^{3/2}$ bei Entwicklung an der Stelle $x_0 = 5$ an.
- 5. Bestimmen Sie den komplexen Fourier-Koeffizienten c_5 für die Funktion f, welche die Periode 3 hat, für $0 \le t < 1$ gleich 0 ist und für $1 \le t < 3$ durch $f(t) := e^{-t}$ gegeben ist.

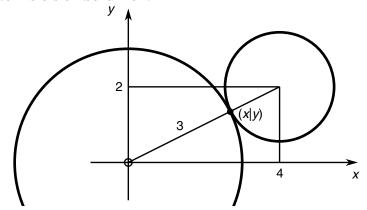


6. Die Funktion $f(x,y) := x^3 - x^2 + y^2 + 2xy - 5x - 6y$ hat an (x|y) = (1|2) ein lokales Minimum. Weisen Sie das nach. Hinweis: 3 ist größer als $\sqrt{5}$.

1

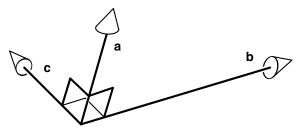
Kreative Anwendung

- 7. Geben Sie alle komplexen Zahlen z an, die $z^3+z=0$ erfüllen. Vorüberlegung: Wie viele verschiedene Lösungen kann diese Gleichung maximal haben?
- 8. Im \mathbb{R}^2 seien zwei Kreise gegeben: Der erste Kreis hat den Mittelpunkt (0|0) und den Radius 3; der zweite Kreis hat den Mittelpunkt (4|2) und einen nicht angegebenen Radius. Beide Kreise berühren sich, siehe Skizze. Berechnen Sie (Nicht einfach nur aus der Skizze ablesen!) den Punkt (x|y), an dem sie sich berühren.

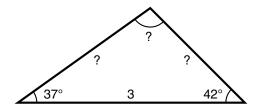


9. Gegeben ist der Vektor $\mathbf{a} := \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Finden Sie zwei Vektoren \mathbf{b} und \mathbf{c} im

 \mathbb{R}^3 , so dass jeder der drei Vektoren **a**, **b**, **c** senkrecht zu den jeweils beiden anderen ist. Keiner soll der Nullvektor sein. (Lösung nicht eindeutig)



10. In einem Dreieck habe eine Seite die Länge 3 und die beiden anderen Seiten bilden mit dieser Seite Innenwinkel von 37° und 42°, siehe Skizze. Berechnen Sie die Längen der beiden anderen Seiten.



- 11. Finden Sie eine *spezielle* Lösung der Differentialgleichung dritter Ordnung $y''' + y = x^3$. (Lösung nicht eindeutig)
- 12. Finden Sie durch Trennung der Variablen die Lösung der Differentialgleichung $y' \stackrel{!}{=} y \cos(x)$ zur Anfangsbedingung $y(3) \stackrel{!}{=} -5$ (Achtung: *minus* 5).