Mathematik für Informatiker Klausur: Mathematik 1

Maximale Punktzahl: 36, Mindestpunktzahl: 12

Jörn Loviscach 6. August 2001

Dauer: 90 Minuten

Nachname	Vorname	
Matrikelnummer E-Mail-Adre	esse	
1. Sei z eine komplexe Zahl. Geben Sie eine aan, dass $z^{42}=1$ (aber eine andere Beding	0 0	1 P
2. Schreiben Sie das Ergebnis der Mengenop einigungsmenge zweier Intervalle.	eration $(0,3] \setminus (1,2]$ als Ver-	1 P
3. Geben Sie reelle Zahlen a und b an, sodas i die imaginäre Einheit ist.	ss $(i-2)(a+bi)=3$, wobei	2 P
4. Seien a , b und x positive reelle Zahlen, a $\sqrt[b]{1+a^x}=2.$	\neq 1. Lösen Sie nach x auf:	1 P
5. Durch die Punkte $(2,2)$ und $(1,3)$ des \mathbb{R} de. Bestimmen Sie rechnerisch, ob sie der Mittelpunkt $(0,0)$ schneidet. Wenn ja, wo	n Kreis mit Radius $\sqrt{8}$ und	2 P
6. Die Punkte (1,4,3), (1,2,1) und (1,0,3) auf. Weisen Sie rechnerisch nach, dass ein		2 P

- 7. Schreiben Sie die Punktspiegelung von \mathbb{R}^2 am Zentrum (2,3) als affine 2 P. Transformation, also mit Matrix und Verschiebungsvektor.
- 8. Eine Ebene im \mathbb{R}^3 enthalte die Punkte (1,0,0), (2,3,0) und (4,5,1). 2 P. Bestimmen Sie die Schnittmenge dieser Ebene mit der Geraden, die durch (4,0,3) und (6,3,4) verläuft.
- 9. Bestimmen Sie alle Eigenvektoren der reellen Matrix $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. 2 P.
- 10. Drücken Sie $\sin(7\phi)$ für beliebiges $\phi \in \mathbb{R}$ so aus, dass nur $e^{i\phi}$ und $e^{-i\phi}$ vorkommen, aber keine anderen Funktionen von ϕ . (Nicht weiter vereinfachen.) Beispiel für einen Ausdruck dieser Art: $(e^{i\phi})^{42} ie^{-i\phi}$
- 11. Ist die Folge $(\sin(n) 3/n)/(7n^2 + e^n)$ mit n = 1, 2, 3, ... für $n \to \infty$ 1 P. konvergent? Wenn ja, was ist ihr Grenzwert?
- 12. Besitzt die auf \mathbb{R} durch $f(x) = (2x^3 + 1)/(x^2 + 2)$ definierte Funktion 2 P. f für $x \to \pm \infty$ eine Asymptotengerade? Wenn ja, welche?
- 13. Rechnen Sie aus (nicht weiter vereinfachen): 2 P.

$$\frac{d}{dx}\left(x^5 + \ln(1+x^2) + \frac{7x+3}{1+x^4}\right)$$

- 14. Eine Funktion f habe den Definitionsbereich [0,1] und sei bestimmt durch $f(x) = x x^2$. Was ist der größte Wert, den die Funktion auf ihrem Definitionsbereich annimmt? Vollständige Begründung!
- 15. Finden Sie eine Stammfunktion zu $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = (5x 9)^3$. 1 P.
- 16. Berechnen Sie: $\int_0^1 \frac{dx}{x^2 + 3x + 2}$
- 17. Berechnen Sie z. B. per partieller Integration (Rechenweg!): 2 P. $\int_0^\pi x \cos(2x) \, dx$
- 18. Schätzen Sie die Fläche eines Viertels der Einheitskreisscheibe per Simpson-Verfahren (ein Doppelstreifen) für die Funktion $\sqrt{1-x^2}$.
- 19. Entwickeln Sie die auf $[-1,\infty)$ durch $f(x)=(x+1)^{3/2}$ definierte Funktion f an x=0 bis einschließlich der zweiten Ordnung nach Taylor.
- 20. Bestimmen Sie eine unendliche Reihe, die sich summiert zu: 2 P.

$$\int_0^1 \exp(-x^2) \, dx$$